In-Network Congestion Management

for Security and Performance

Albert Gran Alcoz

nsg.ee.ethz.ch

Cloudflare
November 2023

https://nsg.ee.ethz.ch

Why do we care about congestion?

Why do we care about congestion?

Without congestion management, the Internet collapses

Why do we care about congestion?

Without congestion management, the Internet collapses

ND SOLUTIONS PRODUCTS RESOURCES SUPPORT COMPANY CONTACT US

AWS hit by Largest Reported DDoS Attack of 2.3
Tbps

This massive DDoS attack took large sections
of a country's internet offline

More than 200 organisations across Belgium including the government and parliament were affected by a DDoS attack
that overwhelmed them with bad traffic.

GitHub hit with the largest DDoS attack ever
seen

2.9 million DDoS attacks recorded in Q1
2021

lers have found a new way of magnifying their attacks, with
ing that bigger attacks are likely.

Google Reveals it Was Hit by 2.5Tbps
DDoS

Google warns of ‘exponential’ rise in DDoS attack
volumes

Reveals details of 2.5 Tbps attack in 2017

Leon Spencer (ARN) =
11 19 October, 2020 11:54 n “ n = =

DDoS attacks

Why do we care about congestion?

Without congestion management, the Internet collapses

AWS hit by Largest Reported DDoS Attack of 2.3

Tbps

This massive DDoS attack took large sections
of a country's internet offline

More than 200 organisations across Belgium including the government and parliament were affected by a DDoS attack
that overwhelmed them with bad traffic.

throughput

GitHub hit with the largest DDoS attack ever
seen

2.9 million DDoS attacks recorded in Q1
2021

lers have found a new way of magnifying their attacks, with
ing that bigger attacks are likely.

Google Reveals it Was Hit by 2.5Tbps

DDoS load

Google warns of ‘exponential’ rise in DDoS attack
volumes

Reveals details of 2.5 Tbps attack in 2017

Leon Spencer (ARN) =
11 19 October, 2020 11:54 n “ n = =

DDoS attacks Congestion collapse (1986)

Congestion management is than congestion control

Packet Scheduling

= gl - ==t

P S B L T T

=

-,'.Q

.lIlIII ‘ I '!'!III E".W" W!delu

SP-PIFO: Programmable Scheduling, Today NSDI ‘20

ACC-Turbo: Mitigating Pulse-wave DDoS with
Programmable Scheduling

SIGCOMM 22

QVISOR: Virtualizing Scheduling Policies HotNets ‘23

SP-PIFO: Programmable Scheduling, Today NSDI ‘20

ACC-Turbo: Mitigating Pulse-wave DDoS with
Programmable Scheduling

SIGCOMM 22

QVISOR: Virtualizing Scheduling Policies HotNets ‘23

Packet scheduling

What packet next
and when?

4)

Packet scheduling

What packet next

and when?
a)
7
_ Y,

Minimize tail latency FIFO+

Prioritize packets with higher queuing time

Minimize FCTs SRPT, PIAS, pFabric

Prioritize packets from short flows

Enforce fairness WRR, (SFQ, WFQ

One packets from each class at a time

Quite unfortunately...

a universal scheduling algorithm does not exist

NSDI'16

Universal Packet Scheduling

Radhika Mittal’ Rachit Agarwal’
TUC Berkeley

Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and

e ot serscede Tae 0h i i rcence covem o3 wud sl e i e cmere o

Sylvia Ratnasamy' Scott Shenker'*
tiest

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask

the rnectian ahatt nmnivercalityr)

Quite unfortunately...
a universal scheduling algorithm does not exist

“You can’t have everything you want,

but you can have anything you want”

Generality Flexibility

Universal packet scheduler Customized algorithms

Quite unfortunately...
a universal scheduling algorithm does not exist

“You can’t have everything you want,

but you can have anything you want”

Generality Programmable

Scheduling

Push-In First-Out (PIFO) queues

enable programmable packet scheduling

SIGCOMM'16

[cs.NI] 19 Feb 2016

X1v:1602.06045v1

Programmable Packet Scheduling

Anirudh Sivaraman , Suvinay Subramanian, Anurag Agrawal*, Sharad Cholct, Shang-Tse Chuang’, Tom Edsall*,
Mohammad Alizadeh®, Sachin Katti*, Nick McKeown*, Hari Balakrishnan™
"MIT CSAIL, "Barefoot Networks, *Cisco Systems, *Stanford University

ABSTRACT

Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today—to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <4% chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.

We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-

gram a diverse set of scheduling algorithms in the model

Push-In First-Out (PIFO) queues
enable programmable packet scheduling

Pushes packets into arbitrary locations (Packet ranks)

Drains packets from the head

PIFO Queue

Push-In First-Out (PIFO) queues
enable programmable packet scheduling

Pushes packets into arbitrary locations (Packet ranks)

Drains packets from the head

PIFO Queue

Push-In First-Out (PIFO) queues
enable programmable packet scheduling

Programmable Scheduler

f = flow(p)

p.rank = f.size

PIFO queue

Rank computation
programmable

Push-In First-Out (PIFO) queues
enable programmable packet scheduling

Programmable Scheduler

f = flow(p)

p.rank = f.size

PIFO queue

Rank computation
programmable

Push-In First-Out (PIFO) queues
enable programmable packet scheduling

Programmable Scheduler

f = flow(p)

p.rank = f.size

PIFO queue

Rank computation
programmable

Implementing PIFO queues in hardware is challenging

Scalability supports ~1k flows and ~10 Gbps

Flexibility assumes monotonically increasing ranks

Deployability implementing ASICs takes years

Can we approximate PIFO queues...

at line rate,

at scale, and

on existing devices?

SP-PIFO

A deployable, scalable and flexible
PIFO approximation

SP-PIFO approximates PIFO using Strict-Priority queues
and a dynamic mapping strategy

Programmable Scheduler

f = flow(p)

p.rank = f.size

- 544

Adaptation Strategy

Rank computation
orogrammable Strict-Priority Queues

SP-PIFO: Programmable Scheduling, Today NSDI ‘20

ACC-Turbo: Mitigating Pulse-wave DDoS with
Programmable Scheduling

SIGCOMM 22

QVISOR: Virtualizing Scheduling Policies HotNets ‘23

Pulse-wave DDoS attacks are

a new type of network-layer DDoS attack

Target
a critical link

Volumetric

(Gbps)

Multinle % O O evevvrnnes C;{@)
D Target Link

attack vectors User Critical

Services

D

Attacker

Pulse-wave DDoS attacks are

a new type of network-layer DDoS attack

Target

a critical link
Short high-rate pulses

Volumetric

(Gbps)

Multinle % O O evevvrnnes G;{@)
D Target Link

attack vectors User Critical

Services

D

Attacker

Pulse-wave DDoS attacks are composed of
short-duration high-rate traffic pulses

High
Throughput Different vectors: e.g., NTP, DNS

07:00 07:30 08:00 08:30 Time

Short duration: ~ 1 min —»|le

Pulse-wave DDoS attacks exploit
the limitations of existing defenses

Narrow

attack coverage Signature-based
Access-control lists

In-Network
Defense
9‘ é} O _?_ﬂ)
— Target Link °
User Critical

Services

D

Attacker

Pulse-wave DDoS attacks exploit
the limitations of existing defenses

Filter-based
Rerouting-based

Drastic
mitigation In-Network
Defense
% 5 O o
Target Link

User Critical

Services
()

Attacker

Pulse-wave DDoS attacks exploit

the limitations of existing defenses

Slow
reaction time

Up to minutes !!

Offline
/-’Appliance

e

In-Network
Defense

/

D

Attacker

Target Link

Critical
Services

Pulse-wave DDoS attacks exploit
the limitations of existing defenses

A
If count > threshold. >
mitigate; Offline

Appliance
In-Network
Defense
% é} o C;_{@\D
Target Link

User Critical

Services
Risk of ()

misconfiguration Attacker

A pulse-wave DDoS defense needs to be ...

Generic

Safe

Fast

Automated

ACC-Turbo

A generic, safe, fast, and automated
DDoS defense

ACC-Turbo

Cluster
statistics :

C4

C2

C3

In-network
online clustering

...... » Assess clusters

66

%
EleiH*—‘l

Programmable
scheduling

How to automatically mitigate inferred attacks?

Programmable ACC-Turbo deprioritizes malicious clusters
scheduling

... leverages the whole uncertainty spectrum

... is safe

... does not require activation

SP-PIFO: Making Scheduling Programmable Today NSDI “20

ACC-Turbo: Mitigating Pulse-wave DDoS with
Programmable Scheduling

SIGCOMM 22

QVISOR: Virtualizing Scheduling Policies HotNets “23

Packet scheduling

What packet next
and when?

4)

Packet scheduling

What packet next

and when?
a)
7
_ Y,

Minimize tail latency FIFO+

Prioritize packets with higher queuing time

Minimize FCTs SRPT, PIAS, pFabric

Prioritize packets from short flows

Enforce fairness WRR, (S)FQ, WFQ

One packets from each class at a time

With programmable scheduling,
we can program any policy

What packet next
and when?

4)

an
- y} Which one?

With programmable scheduling,
we can program any policy

What packet next
and when?

4)

an
_ y} Which one(s)?

Introducing...

QVISOR

A packet scheduling
hypervisor

What would it take to run

multiple scheduling algorithms?

Inputs

Techniques

Operator

Prioritize tenant 1

Tenant 1 Tenant 2 Tenant 3
pFabric EDF WFQ
> Hypervisor

Hardware Sc

neduler

Y
ALY

7&@_

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Tenants label each packet with a
and the tenant ID

Tenant 1 pFabric Packet sequence

9 /

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Tenants label each packet with a rank

and the
Tenant 1 pFabric Packet sequence
Tenant 2 EDF THI9|TT (7] Tl

Tenant 3 FQ

Tenants have the illusion that
their traffic is scheduled by a PIFO queue

Operators define their policy
with a composition language

>> Strict priority Policy:
> Best-effort priority Tl >>T2 +T3

+ Sharing

QVISOR takes as input the policies from
the tenants and the operator

Operator Tenant 1 Tenant 2 Tenant 3
T1 >>T2 + T3 pFabric EDF WFQ
g QVISOR

Hardware Scheduler

Packets _

A

QVISOR synthesizes a joint scheduling function

and deploys it to hardware

Packets

Operator

T1 >>T2+T3

Tenant 1 Tenant 2 Tenant 3

pFabric EDF WFQ

| | |

\ 4

QVISOR Synthesizer

QVISOR
Pre-processor

|

Hardware Scheduler

A

QVISOR’s synthesizer generates a set of
rank-transformation functions

Currently, the synthesizer supports
two operation types

Rank normalizations

{ 700, 800,900} — 1{7,8,9}

Rank shifts
{7!8!9}_> {]!2!3}

QVISOR’s synthesizer generates a set of

rank-transformation functions

Operator

T1 >>T2+ T3

Rank-transformation
functions

Tenant 1 Tenant 2 Tenant 3
{7,8,9} {1,3} {1,2}
! ! !

QVISOR Synthesizer

17,8,9]}

'
11,2,3}

l
11,3}
'
14,6}

11,2}
'
157}

QVISOR’s synthesizer generates a set of
rank-transformation functions

Operator Tenant 1 Tenant 2 Tenant 3
T1 >>T2+ T3 {7,8,91} {1, 3} {1,2}
I ' '
QVISOR Synthesizer
:
QVISOR Pre-processor
Rank-transformation T1:{7.89} — {1.2.3}
functions T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8 1 3 T1:{7,8,9} — {1,2,3} 3 1 ..

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

3 1 2 4 5 PIFO

QVISOR’s pre-processor applies the transformation functions
at line rate in the data plane

QVISOR Pre-processor

9 7 8] 3 T1:{7,8,9} — {1,2,3}

T2: {1,3} — {4,6}
T3: {3,5} — {5,7}

T1 >>T2 + T3

PIFO 5 4 3

QVISOR

Operator

T1 >>T2+T3

Rank transformation

Tenant 1

Tenant 2 Tenant 3

pFabric

EDF

WFQ

A 4

Specification

A 4

QVISOR
Pre-processor

QVISOR Synthesizer

A 4

Configuration

Hardware Scheduler

4
1 1
T T
| W
(W

7&&_

SP-PIFO: Programmable Scheduling, Today NSDI ‘20

ACC-Turbo: Mitigating Pulse-wave DDoS with
Programmable Scheduling

SIGCOMM 22

QVISOR: Virtualizing Scheduling Policies HotNets ‘23

