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Packet scheduling When and in which order
should we forward
buffered packets?
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Minimize tail latency

FIFO+ Prioritize packets with higher queuing time
LSTF

Minimize flow completion times

SRPT Prioritize packets from short flows
PIAS
pFabric

Enforce max-min fairness

WRR Send one packet from each class at a time

(SFQ
WFQ
+ many more



|s there a universal packet scheduler?
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Abstract

In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that

the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and faimess); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction

There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and

Sylvia Ratnasamy' Scott Shenker'*

YICSI

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. !

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask




“You can’t have everything you want,

Generality

Universal packet scheduler




“You can’t have everything you want,

but you can have anything you want”

Generality Flexibility

Universal packet scheduler Customized algorithms




“You can’t have everything you want,

but you can have anything you want”

Programmable

scheduling




Push-In First-Out Queue (PIFO) is a data structure

that enables programmable packet scheduling
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ABSTRACT

Switches today provide a small set of scheduling algorithms.
While we can tweak scheduling parameters, we cannot mod-
ify algorithmic logic, or add a completely new algorithm,
after the switch has been designed. This paper presents a
design for a programmable packet scheduler, which allows
scheduling algorithms—potentially algorithms that are un-
known today——to be programmed into a switch without re-
quiring hardware redesign.

Our design builds on the observation that scheduling algo-
rithms make two decisions: in what order to schedule pack-
ets and when to schedule them. Further, in many schedul-
ing algorithms these decisions can be made when packets
are enqueued. We leverage this observation to build a pro-
grammable scheduler using a single abstraction: the push-in
first-out queue (PIFO), a priority queue that maintains the
scheduling order and time for such algorithms.

We show that a programmable scheduler using PIFOs lets
us program a wide variety of scheduling algorithms. We
present a detailed hardware design for this scheduler for a
64-port 10 Gbit/s shared-memory switch with <4% chip area
overhead on a 16-nm standard-cell library. Our design lets
us program many sophisticated algorithms, such as a 5-level
hierarchical scheduler with programmable scheduling algo-
rithms at each level.

1. INTRODUCTION

uler, switch designers would implement scheduling algo-
rithms as programs atop a programmable substrate. Moving
scheduling algorithms into software makes it much easier to
build and verify algorithms in comparison to implementing
the same algorithms as rigid hardware IP.

This paper presents a design for programmable packet
scheduling in line-rate switches. Our design is motivated by
the observation that all scheduling algorithms make two key
decisions: first, in what order should packets be scheduled,
and second, at what time should each packet be scheduled.
Furthermore, in many scheduling algorithms, these two deci-
sions can be made when a packet is enqueued. This observa-
tion was first made in a recent position paper [36]. The same
paper also proposed the push-in first-out queue (PIFO) [15]
abstraction for maintaining the scheduling order or schedul-
ing time for packets, when these can be determined on en-
queue. A PIFO is a priority queue data structure that allows
elements to be pushed into an arbitrary location based on
an element’s rank, but always dequeues elements from the
head.

Building on the PIFO abstraction, this paper presents the
detailed design, implementation, and analysis of feasibil-
ity of a programmable packet scheduler. To program a
PIFO, we develop the notion of a scheduling transaction—
a small program to compute an element’s rank in a PIFO.
We present a rich programming model built using PIFOs
and scheduling transactions (§2) and show how to pro-
gram a diverse set of scheduling algorithms in the model
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B pushes packets to arbitrary positions,

based on their ranks

B drains packets from the head



Push-In First-Out Queue (PIFO) is a data structure
that enables programmable packet scheduling

A PIFO queue...

B pushes packets to arbitrary positions,

based on their ranks
B drains packets from the head

Sorts packets perfectly by increasing rank order



Incoming PIFO queue Outgoing
packets packets
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Push-In First-Out Queue (PIFO) is a data structure
that enables programmable packet scheduling

How exactly?



Implementing a new algorithm simply requires
to adapt the rank computation logic

Programmable Scheduler

Rank computation PIFO queue

programmable fixed

f = flow(p)

p.rank = f.size
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Implementing a new algorithm simply requires
to adapt the rank computation logic

Programmable Scheduler

Incoming Rank computation PIFO queue
packets . programmable fixed
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Implementing a new algorithm simply requires
to adapt the rank computation logic

Programmable Scheduler

Incoming Rank computation PIFO queue Outgoing
packets . programmable fixed i packets

f = flow(p) )

p.rank = f.size




Implementing PIFO queues in hardware is challenging

Existing proposal...

Scalability supports ~1k flows and ~10 Gbps
Flexibility assumes monotonically increasing ranks
Moreover...

Deployability implementing ASICs takes years



Can we approximate PIFO queues...

B at line rate;
B at scale;

B on existing devices?
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Can we approximate PIFO queues...

B at line rate;
B at scale;

B on existing devices?

Yep!
Introducing SP-PIFO



SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy

SP-PIFO Programmable Scheduler

Rank computation Mapping strategy Strict-priority queues

ng-

f = flow(p)
p.rank = f.size




SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy

high priority
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy

high priority
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy
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SP-PIFO approximates PIFO queues using
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SP-PIFO approximates PIFO queues using
strict-priority queues and a dynamic mapping strategy
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gqueue mapping policy: enqueues if rank > queue bound ;
when scanning bottom-up



If there are as many queues as ranks,
SP-PIFO is equivalent to PIFO
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exactly one rank per queue




In practice though,
number of ranks >> number of queues
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ranks {1,2} and ranks {4,5} scheduling errors
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy

mapping policy g* = [1,2,3]
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We can minimize the number of scheduling errors
by dynamically adapting the mapping policy
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How can we design a mapping strategy
that minimizes scheduling errors?



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

1 Adaptation strategy

how does it work?

2 Implementation

how can it be deployed?

3 Fvaluation

how well does it perform?
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Finding an optimal mapping policy is
an optimization problem

X

q° = argmin [ U(q,7) |
qu r~R ‘

optimal expected loss across all ranks
mapping policy "unpifoness”



Solving this optimization problem

exactly is unfortunately
g = argmin [ U(q,7) |
qu r~R ‘
optimal expected loss across all ranks

mapping policy "unpifoness”



We can approximate the solution by turning the problem
into an online empirical risk minimization problem



We can approximate the solution by turning the problem
into an online empirical risk minimization problem

enqueued
packets

\
q* = argmin U(P,q)
S1% ‘

online estimated
mapping policy unpifoness



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases

phase 1 gradually map higher-priority packets
push-up to higher-priority queues

concentrates scheduling errors
in the highest-priority queue



SP-PIFO dynamically adapts the mapping policy
on a per-packet basis, in two phases

upon scheduling error...

phase 2 shift lower-priority packets
push-down to lower-priority queues















"push-up” increase queue bound i to rank(enqueued packet)

































scheduling error of cost 3-2=1




scheduling error of cost 3-2=1




scheduling error of cost 3-2=1

"push-down” decrease all queue bounds by cost



SP-PIFO: Approximating Push-In First-Out Behaviors
Using Strict-Priority Queues

Adaptation strategy

how does it work?

2 Implementation

how can it be deployed?

Fvaluation

how well does it perform?



We managed to program SP-PIFO on
existing programmable data planes
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How well can SP-PIFO approximate
well-known scheduling objectives?



How well can SP-PIFO approximate
well-known scheduling objectives?

Scheduling Minimize Flow Completion Time
objectives

pFabric (8 queues)

Ranks are set to the remaining flow size

Enforce max-min fairness

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model



Packet-level
simulator

Topology

Realistic
workloads

Netbench [SIGCOMM 201 7]

We use a leaf-spine topology with:
144 servers, 1/4 Gbps links

pFabric web-search workload



SP-PIFO closely approximates pFabric
minimizing FCTs for both small and big flows
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SP-PIFO closely approximates fair-queueing algorithms
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Check our paper out for much more info...

SP-PIFO characterization,
comparison with gradient

Hardware evaluation on
Intel Tofino

Limitations and
future improvements
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Abstract

Push-In First-Out (PIFO) queues are hardware primitives
which enable programmable packet scheduling by providing
the abstraction of a priority queue at line rate. However, imple-
menting them at scale is not easy: just hardware designs (not
implementations) exist, which support only about 1k flows.

In this paper, we introduce SP-PIFO, a programmable
packet scheduler which closely approximates the behavior
of PIFO queues using strict-priority queues—at line rate, at
scale, and on existing devices. The key insight behind SP-
PIFO is to dynamically adapt the mapping between packet
ranks and available strict-priority queues to minimize the
scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an
adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge.

We fully implement SP-PIFO in P4 and evaluate it on real
workloads. We show that SP-PIFO: (i) closely matches PIFO,
with as little as 8 priority queues; (ii) scales to large amount of
flows and ranks; and (iii) quickly adapts to traffic variations.
We also show that SP-PIFO runs at line rate on existing hard-
ware (Barefoot Tofino), with a negligible memory footprint.

1 Introduction

Until recently, packet scheduling was one of the last bastions
standing in the way of complete data-plane programmability.
Indeed, unlike forwarding whose behavior can be adapted
thanks to languages such as P4 [7] and reprogrammable hard-
ware [2], scheduling behavior is mostly set in stone with
hardware implementations that can, at best, be configured.

To enable programmable packet scheduling, the main chal-
lenge was to find an appropriate abstraction which is flexible
enough to express a wide variety of scheduling algorithms and
yet can be implemented efficiently in hardware [22]. In [23],
Sivaraman et al. proposed to use Push-In First-Out (PIFO)
queues as such an abstraction. PIFO queues allow enqueued
packets to be pushed in arbitrary positions (according to the
packets rank) while being drained from the head.

Incoming packets sequence

PIFO queue (theoretical)

strategy A

suboptimal output

optimal output
SP-PIFO (approximation)

Figure 1: SP-PIFO approximates the behavior of PIFO queues
by adapting how packet ranks are mapped to priority queues.

While PIFO queues enable programmable scheduling, im-
plementing them in hardware is hard due to the need to ar-
bitrarily sort packets at line rate. [23] described a possible
hardware design (not implementation) supporting PIFO on
top of Broadcom Trident II [1]. While promising, realizing
this design in an ASIC is likely to take years [6], not includ-
ing deployment. Even ignoring deployment considerations,
the design of [23] is limited as it only supports ~1000 flows
and relies on the assumption that the packet ranks increase
monotonically within each flow, which is not always the case.

Our work In this paper, we ask whether it is possible to ap-
proximate PIFO queues at scale, in existing programmable
data planes. We answer positively and present SP-PIFO,
an adaptive scheduling algorithm that closely approximates
PIFO behaviors on top of widely-available Strict-Priority (SP)
queues. The key insight behind SP-PIFO is to dynamically
adapt the mapping between packet ranks and SP queues in
order to minimize the amount of scheduling mistakes relative
to a hypothetical ideal PIFO implementation.




SP-PIFO makes packet scheduling programmable... today!

SP-PIFO approximates the behavior of PIFO queues
at line rate, at scale and on existing devices

SP-PIFO dynamically maps packets to queues
sO as to minimize scheduling errors

SP-PIFO automatically reacts to traffic variations
without requiring any traffic knowledge



