
Approximating Push-In First-Out Behaviors

Albert Gran Alcoz,

Alexander Dietmüller,

Laurent Vanbever

SP-PIFO

1

4 5 4 4 3

1 2 1

sp-pifo.ethz.ch

SP-PIFO:

Barefoot Networks

February, 28 2020

1

Using Strict-Priority Queues

2

[SIGCOMM ’92]

Minimize tail packet delays

[SIGCOMM ’13, NSDI ’15]

Minimize flow completion times

[ToN ’93, NSDI ’18]

Enforce max-min fairness

3

[NSDI ’16]

Is there a universal packet scheduler?

4

“You can’t have everything you want,

but you can have anything you want”

Flexibility

Customized algorithms

Generality

Universal packet scheduler

[NSDI ’16]

Is there a universal packet scheduler?

5

Generality

Universal packet scheduler

Programmable

scheduling

but you can have anything you want”

“You can’t have everything you want,

[NSDI ’16]

Is there a universal packet scheduler?

6

[SIGCOMM ’16]

PIFO abstraction for

programmable scheduling

Assumes monotonic increase of

ranks within flows

Supports ~1k flows and ~10 Gbps

Requires new ASIC implementation,

which might take years

Deployability

Scalability

Flexibility

Implementing PIFO queues in hardware

is difficult

on existing devices?

Can we approximate PIFO queues…

at scale, and

at line rate,

7

 Introducing…

SP-PIFO

8

A deployable, scalable and flexible

PIFO approximation

PIFO queues can be used as an abstraction

to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head

9

Packet ranks

PIFO queues can be used as an abstraction

to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head

10

Packet ranks

PIFO Queue

4 145 32
Input sequence Output sequence

PIFO queues can be used as an abstraction

to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head

11

Packet ranks

PIFO Queue

4 145 3
Input sequence Output sequence

2

PIFO queues can be used as an abstraction

to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head

12

Packet ranks

PIFO Queue

4 145 3 2
Input sequence Output sequence

PIFO queues can be used as an abstraction

to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head

13

Packet ranks

PIFO Queue

Input sequence

5 4 4 3 2 1
Output sequence

2

Programmable

scheduler

14

PIFO queues can be used as an abstraction

to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

1445 3

Programmable

scheduler

15

PIFO queues can be used as an abstraction

to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

1445 32

445 3

Programmable

scheduler

16

PIFO queues can be used as an abstraction

to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

12

17

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Adaptation Strategy
Strict-Priority Queues

1
2
445

3

Rank Computation

p.rank = f.size

f = flow(p)

Programmable

scheduler

Rank computation (programmable)

Adaptation strategy + strict-priority queues (fixed logic)

18

Ideal case Perfect PIFO if number of queues >= number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Strict-Priority Queues

1
2
3
4
5

2
3

5

1

44

19

Ideal case Perfect PIFO if number of queues >= number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Output sequence

Strict-Priority Queues

1
2
3
4
5

5 4 4 3 2 1

20

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

21

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Output sequence can have scheduling errorsProblem

22

Strict-Priority Queues

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Problem Output sequence can have scheduling errors

4
2 3 1

Problem Output sequence can have scheduling errors

23

Low-ranked packets drained after high-ranked packets

suboptimal output

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Strict-Priority Queues

4 12 3

Problem Output sequence can have scheduling errors

24

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues

and a dynamic mapping strategy

Design mapping strategies that

minimize scheduling errors

Opportunity

25

SP-PIFO defines mapping through ‘queue bounds'

Queue bounds scanned bottom-upMapping

Packet enqueued if rank >= queue bound

26

SP-PIFO defines mapping through ‘queue bounds'

Queue bounds scanned bottom-upMapping

Packet enqueued if rank >= queue bound

Strict-Priority Queues

134 2
Input sequence Output sequence

?

27

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

134 2
Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

28

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

34 12
Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

Input sequence Output sequence

34 2

29

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

1

Is rank >= queue bound ?

Input sequence Output sequence

34 2

30

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

1

31

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

11
4

Input sequence Output sequence

Mapping

34 2

Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

32

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
1
4

4 2 3
suboptimal output

Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

33

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
1
4

4 2 3
suboptimal output

1
3
Strategy B

134 2

Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

34

SP-PIFO defines mapping through ‘queue bounds'

Strategy A

Input sequence Output sequence

1
1
4

4 2 3
suboptimal output

1
3
Strategy B

134 2
optimal output

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound

35

How can we design a mapping strategy

that minimizes scheduling errors?

 1	 Adaptation design

How does it work

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform

36

Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 1	 Adaptation design

How does it work

37

Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform

38

Problem formulation

q* = argmin E [U(q, r)]
q ∈ Q r ∼ R

Objective Find optimal queue bounds q*

That minimize the expected loss U for all ranks

Unpifoness (U) quantifies the scheduling errors

39

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 42

Strict-Priority Queues

Input sequence Output sequence

0
3

0

Initialization

Queue bounds set to zero

Zero traffic knowledge

40

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0
3

0

Rank >= queue bound ?

Initialization

Queue bounds set to zero

Zero traffic knowledge

4

41

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0

Initialization

Queue bounds set to zero

Zero traffic knowledge

Rank >= queue bound ?

4
3

42

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0 43

Initialization

Queue bounds set to zero

Zero traffic knowledge

43

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0
43

scheduling error

Initialization

Queue bounds set to zero

Zero traffic knowledge

44

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

00 4

Initialization

Queue bounds set to zero

Zero traffic knowledge

Rank >= queue bound ?

3

45

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0
3

0 4Push-up 4

46

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0
3

44

47

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

00 44

After enqueue, queue bound set to

the rank of the packet enqueued

Push-up

(future low-rank packets to

higher-priority queues)

Rank >= queue bound ?

3

48

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0

3

0 44

Push-up 3

After enqueue, queue bound set to

the rank of the packet enqueued

Push-up

(future low-rank packets to

higher-priority queues)

49

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

3

0

3

0 44

50

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

3

0

3

0 44

!

Output sequence

After enqueue, queue bound set to

the rank of the packet enqueued

Push-up

(future low-rank packets to

higher-priority queues)

2

51

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

3

00 44

Output sequence

2 3

Error cost = (queue bound - rank) = 1

2

52

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

3Push-down 3 3

4

For all queue bounds:

decrease error cost (1)

2

2

53

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

Push-down 32 3

4

2

For all queue bounds:

decrease error cost (1)

2

54

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

32 3

3Push-down

2

For all queue bounds:

decrease error cost (1)

55

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

32 3

3

2

After potential error detected,

all queue bounds decreased the error cost

Push-down

(future high-rank packets to

lower-priority queues)

3

56

SP-PIFO adapts the mapping of packet ranks

to strict-priority queues

Objective Find optimal queue bounds q*

That minimize the expected loss U for all ranks

Strict-Priority Queues

00 4

3 32

3

2

3
Push-up Push-down

Low-rank packets High-rank packets

Result Packet-level adaptation of q

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform

57

Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 1	 Adaptation design

How does it work

58

SP-PIFO has been fully implemented on

Barefoot Tofino

Parser Traffic ManagerIngress pipeline

…

Priority Queues

Queue Bound n

Registers

Queue Bound n-1 Queue Bound 1

Metadata

Queue ID

Queue Bound 1 - Rank

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform

59

Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 1	 Adaptation design

How does it work

How well does SP-PIFO approximate

well-known scheduling objectives under

realistic traffic workloads?

Max-min fairness

Minimizing Flow Completion Time

pFabric* (8 queues)

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model

Ranks are set to the remaining flow size

60

Evaluation

* without starvation prevention

Scheduling

objectives

Question

61

 We generate traffic following pFabricRealistic

workloads web-search workload

Methodology

 We use a leaf-spine topology with 144 servers,Topology

 links of 1Gbps and 4Gbps

Packet-level

simulator

 We integrated SP-PIFO in Netbench

[SIGCOMM 2017]

50

62

SP-PIFO closely approximates pFabric,

minimizing FCTs for both small and big flows

Load

Small flows <100KB Big flows ≥1MB

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

Load

0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

0

100

200

300

400

99th percentile FCT (ms) Average FCT (ms)

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

63

SP-PIFO closely approximates state-of-the-art

fair-queuing algorithms

101

103

105

107

≥2M 0.2M-1M 80K 50K 30K 20K 10K

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Flow Size

PIFO
AFQ

SP-PIFO
DCTCP

TCP

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

Flow size

All flows @ Load 0.7

Average FCT (ms)

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load

≥2M

10

105

107

103

0
≤1M 80K 50K 30K 20K 10K

Small flows <100KB

Average FCT (ms)

00

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

64

SP-PIFO characterization,

comparison with gradient

Check our website!

Limitations and
future improvements

sp-pifo.ethz.ch

All the code is available
All our experiments are reproducible

Hardware evaluation on

Barefoot Tofino

65

SP-PIFO approximates the behavior of PIFO queues

Making scheduling programmable, today!SP-PIFO:

at line rate, at scale and on existing devices

It adapts the mapping between packet ranks and

strict-priority queues to minimize the scheduling errors

It reacts per-packet to traffic variations,

without traffic knowledge required

sp-pifo.ethz.ch

Albert Gran Alcoz Alexander Dietmüller Laurent Vanbever

66

Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

