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Using Strict-Priority Queues
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[SIGCOMM ’92]

Minimize tail packet delays

[SIGCOMM ’13, NSDI ’15]

Minimize flow completion times

[ToN ’93, NSDI ’18]

Enforce max-min fairness
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[NSDI ’16]

Is there a universal packet scheduler?
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“You can’t have everything you want,

but you can have anything you want”

Flexibility

Customized algorithms

Generality

Universal packet scheduler

[NSDI ’16]

Is there a universal packet scheduler?
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Generality

Universal packet scheduler

Programmable

scheduling

but you can have anything you want”

“You can’t have everything you want,

[NSDI ’16]

Is there a universal packet scheduler?
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[SIGCOMM ’16]

PIFO abstraction for 

programmable scheduling

Assumes monotonic increase of 

ranks within flows

Supports ~1k flows and ~10 Gbps

Requires new ASIC implementation,

which might take years

Deployability

Scalability

Flexibility

Implementing PIFO queues in hardware 

is difficult



on existing devices?

Can we approximate PIFO queues…

at scale, and

at line rate,
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 Introducing…


SP-PIFO
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A deployable, scalable and flexible 


PIFO approximation



PIFO queues can be used as an abstraction 


to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head
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Packet ranks



PIFO queues can be used as an abstraction 


to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head
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Packet ranks

PIFO Queue

4 145 32
Input sequence Output sequence
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Packet ranks

PIFO Queue
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PIFO queues can be used as an abstraction 


to make scheduling programmable

The PIFO queue Allows packets to be pushed into arbitrary locations

Only drains packets from the head
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Packet ranks

PIFO Queue

Input sequence

5 4 4 3 2 1
Output sequence
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Programmable

scheduler
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PIFO queues can be used as an abstraction 


to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

1445 3



Programmable

scheduler
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PIFO queues can be used as an abstraction 


to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

1445 32
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Programmable

scheduler
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PIFO queues can be used as an abstraction 


to make scheduling programmable

Rank computation (programmable)

PIFO queue (fixed logic)

Rank Computation

p.rank = f.size

f = flow(p)

Input sequence

PIFO Queue

12
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SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Adaptation Strategy
Strict-Priority Queues

1
2
445

3

Rank Computation

p.rank = f.size

f = flow(p)

Programmable

scheduler

Rank computation (programmable)

Adaptation strategy + strict-priority queues (fixed logic)
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Ideal case Perfect PIFO if number of queues >= number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Strict-Priority Queues

1
2
3
4
5

2
3

5

1

44
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Ideal case Perfect PIFO if number of queues >= number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Output sequence

Strict-Priority Queues

1
2
3
4
5

5 4 4 3 2 1
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In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy
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In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Output sequence can have scheduling errorsProblem
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Strict-Priority Queues

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Problem Output sequence can have scheduling errors

4
2 3 1



Problem Output sequence can have scheduling errors
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Low-ranked packets drained after high-ranked packets

suboptimal output

In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Strict-Priority Queues

4 12 3



Problem Output sequence can have scheduling errors
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In practice Number of queues < number of ranks

SP-PIFO approximates PIFO behaviors using Strict-Priority queues


and a dynamic mapping strategy

Design mapping strategies that 


minimize scheduling errors

Opportunity
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SP-PIFO defines mapping through ‘queue bounds'

Queue bounds scanned bottom-upMapping

Packet enqueued if rank >= queue bound
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SP-PIFO defines mapping through ‘queue bounds'

Queue bounds scanned bottom-upMapping

Packet enqueued if rank >= queue bound

Strict-Priority Queues

134 2
Input sequence Output sequence

?
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

134 2
Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

34 12
Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound



Input sequence Output sequence

34 2
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

1

Is rank >= queue bound ?



Input sequence Output sequence

34 2
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
4

1
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

11
4

Input sequence Output sequence

Mapping

34 2

Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
1
4

4 2 3
suboptimal output

Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

1
1
4

4 2 3
suboptimal output

1
3
Strategy B

134 2

Input sequence Output sequence

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound
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SP-PIFO defines mapping through ‘queue bounds'

Strategy A

Input sequence Output sequence

1
1
4

4 2 3
suboptimal output

1
3
Strategy B

134 2
optimal output

Mapping Queue bounds scanned bottom-up

Packet enqueued if rank >= queue bound
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How can we design a mapping strategy


that minimizes scheduling errors?



 1	 Adaptation design

How does it work

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform
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Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues



 1	 Adaptation design

How does it work
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Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform



38

Problem formulation

q* = argmin E [ U(q, r) ]
q ∈ Q r ∼ R

Objective Find optimal queue bounds q*

That minimize the expected loss U for all ranks

Unpifoness (U) quantifies the scheduling errors
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 42

Strict-Priority Queues

Input sequence Output sequence

0
3

0

Initialization

Queue bounds set to zero

Zero traffic knowledge
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0
3

0

Rank >= queue bound ?

Initialization

Queue bounds set to zero

Zero traffic knowledge

4
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0

Initialization

Queue bounds set to zero

Zero traffic knowledge

Rank >= queue bound ?

4
3
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0 43

Initialization

Queue bounds set to zero

Zero traffic knowledge
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0
43

scheduling error

Initialization

Queue bounds set to zero

Zero traffic knowledge
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

00 4

Initialization

Queue bounds set to zero

Zero traffic knowledge

Rank >= queue bound ?

3
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0
3

0 4Push-up 4
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0
3

44
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

00 44

After enqueue, queue bound set to 


the rank of the packet enqueued

Push-up 


(future low-rank packets to 


higher-priority queues)

Rank >= queue bound ?

3
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

0

0

3

0 44

Push-up 3

After enqueue, queue bound set to 


the rank of the packet enqueued

Push-up 


(future low-rank packets to 


higher-priority queues)
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1 2

Strict-Priority Queues

Input sequence Output sequence

3

0

3

0 44
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

3

0

3

0 44

!

Output sequence

After enqueue, queue bound set to 


the rank of the packet enqueued

Push-up 


(future low-rank packets to 


higher-priority queues)

2
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

3

00 44

Output sequence

2 3

Error cost = (queue bound - rank) = 1



2
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

3Push-down 3 3

4

For all queue bounds: 


decrease error cost (1)

2
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

Push-down 32 3

4

2

For all queue bounds: 


decrease error cost (1)
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

1

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

32 3

3Push-down

2

For all queue bounds: 


decrease error cost (1)
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

Strict-Priority Queues

Input sequence Output sequence

00 4

Output sequence

32 3

3

2

After potential error detected, 


all queue bounds decreased the error cost

Push-down 


(future high-rank packets to 


lower-priority queues)

3
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SP-PIFO adapts the mapping of packet ranks 


to strict-priority queues

Objective Find optimal queue bounds q*

That minimize the expected loss U for all ranks

Strict-Priority Queues

00 4

3 32

3

2

3
Push-up Push-down

Low-rank packets High-rank packets

Result Packet-level adaptation of q



 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform
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Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 1	 Adaptation design

How does it work
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SP-PIFO has been fully implemented on 


Barefoot Tofino

Parser Traffic ManagerIngress pipeline

…

Priority Queues

Queue Bound n

Registers

Queue Bound n-1 Queue Bound 1

Metadata

Queue ID

Queue Bound 1 - Rank



 2	 Implementation

How can it be deployed

 3	 Evaluation

How well does it perform
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Approximating Push-In First-Out Behaviors
SP-PIFO:

Using Strict-Priority Queues

 1	 Adaptation design

How does it work



How well does SP-PIFO approximate 


well-known scheduling objectives under 


realistic traffic workloads?

Max-min fairness

Minimizing Flow Completion Time

pFabric* (8 queues)

Start-Time Fair Queuing (32 queues)

Ranks based on a fluid model

Ranks are set to the remaining flow size

60

Evaluation

* without starvation prevention

Scheduling 

objectives

Question
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 We generate traffic following pFabricRealistic

workloads web-search workload

Methodology

 We use a leaf-spine topology with 144 servers,Topology

 links of 1Gbps and 4Gbps

Packet-level

simulator

 We integrated SP-PIFO in Netbench

[SIGCOMM 2017]



50

62

SP-PIFO closely approximates pFabric, 

minimizing FCTs for both small and big flows

Load

Small flows <100KB Big flows ≥1MB
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SP-PIFO closely approximates state-of-the-art 


fair-queuing algorithms 
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SP-PIFO characterization,

comparison with gradient

Check our website!

Limitations and 
future improvements

sp-pifo.ethz.ch

All the code is available
All our experiments are reproducible

Hardware evaluation on 

Barefoot Tofino
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SP-PIFO approximates the behavior of PIFO queues 

Making scheduling programmable, today!SP-PIFO:

at line rate, at scale and on existing devices

It adapts the mapping between packet ranks and

strict-priority queues to minimize the scheduling errors

It reacts per-packet to traffic variations, 

without traffic knowledge required



sp-pifo.ethz.ch

Albert Gran Alcoz Alexander Dietmüller Laurent Vanbever
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Approximating Push-In First-Out Behaviors
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Using Strict-Priority Queues


