
In-Network Congestion Management
for Security and Performance
PhD Thesis by Albert Gran Alcoz

Diss. ETH No. 30290

diss . eth no. 30290

I N - N E T W O R K C O N G E S T I O N M A N A G E M E N T
F O R S E C U R I T Y A N D P E R F O R M A N C E

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S
(Dr. sc. ETH Zürich)

presented by

A L B E RT G R A N A L C O Z
MSc Telecommunications Engineering

ETSETB UPC
born on 19.11.1994

accepted on the recommendation of

Prof. Dr. Laurent Vanbever
Prof. Dr. Nick McKeown

Prof. Dr. Mohammad Alizadeh

2024

Albert Gran Alcoz: In-Network Congestion Management
for Security and Performance © 2024

Diss. ETH No. 30290

TIK-Schriftenreihe-Nr. 214

A B S T R A C T

It was during the early days of the ARPANET that researchers first realized
the crucial role that congestion would play in the Internet’s performance.
Since then, numerous scholars have dedicated themselves to developing
a variety of algorithms to proactively manage it. Today, 50 years later,
the Internet has undergone significant evolution. Yet, network congestion
remains one of the biggest open challenges in current Internet design.

In this dissertation, we propose techniques aimed at managing network
congestion while enhancing the performance and security of the Internet.
Our approach is grounded in data-plane programmability—a recent techno-
logical paradigm in the networking field that has fundamentally reshaped
how we design and reason about network architectures. Additionally, we ad-
dress state-of-the-art congestion types, such as pulse-wave denial-of-service
(DoS) attacks, which pose a growing threat to existing infrastructures.

First, we introduce SP-PIFO and PACKS, two frameworks that enable
programmable in-network congestion management on existing routers.
Operators assign ranks to packets to indicate how they should be prioritized
during congestion. SP-PIFO and PACKS then admit and schedule packets
based on these ranks. To run on existing devices, they build on a set
of priority queues and decide which packets to admit and how to map
admitted packets to the different queues. SP-PIFO operates on a per-packet
basis, while PACKS enhances SP-PIFO’s performance by incorporating
rank-distribution information and queue-occupancy levels during enqueue.

Next, we present QVISOR, a hypervisor that extends SP-PIFO and PACKS
to support multi-tenancy, allowing different tenants to specify their own pri-
orities while sharing a common set of hardware resources. Within QVISOR,
tenants define their traffic prioritization preferences, while the operator de-
termines how the resources should be allocated. QVISOR then synthesizes
a joint scheduling strategy and implements it on the underlying hardware.

Finally, we introduce ACC-Turbo, a pulse-wave denial-of-service defense
that demonstrates the advantages of in-network congestion management in
the context of security. ACC-Turbo detects attacks at line rate and in real
time by applying online clustering techniques in the network and mitigates
them on a per-packet basis using programmable packet scheduling.

iii

Z U S A M M E N FA S S U N G

In den Anfängen des ARPANET erkannten die Forscher zum ersten Mal,
welch entscheidende Rolle Überlastungen für die Leistung des Internets
spielen würden. Seitdem haben sich zahlreiche Wissenschaftler der Ent-
wicklung von Techniken und Algorithmen gewidmet, um Überlastungen
proaktiv zu bewältigen. Heute, 50 Jahre später, hat sich das Internet erheb-
lich weiterentwickelt. Dennoch ist Netzwerküberlastung nach wie vor eine
der größten offenen Herausforderungen bei der Gestaltung des Internets.

In dieser Dissertation schlagen wir Techniken vor, die darauf abzielen,
Netzüberlastungen zu bewältigen und gleichzeitig die Leistung und Sicher-
heit des modernen Internets zu verbessern.

Zunächst stellen wir SP-PIFO und PACKS vor, zwei Frameworks, die
ein programmierbares netzinternes Staumanagement auf bestehenden Rou-
tern ermöglichen. Betreiber weisen Paketen Ränge zu, um anzugeben, wie
diese im Falle einer Überlastung priorisiert werden sollen. SP-PIFO und
PACKS akzeptieren und ordnen dann Pakete auf der Grundlage dieser
Ränge. Um auf bestehenden Geräten zu laufen, bauen sie auf Prioritätswar-
teschlangen auf und entscheiden, welche Pakete zugelassen werden und
wie die zugelassenen Pakete den verschiedenen Warteschlangen zugeordnet
werden. SP-PIFO entscheidet auf Basis einzelner Pakete, während PACKS
Informationen über die Rangverteilung und Belegung der Warteschlangen
einbezieht, um die Leistung von SP-PIFO zu verbessern.

Als Nächstes stellen wir QVISOR vor, einen Hypervisor, der SP-PIFO
und PACKS erweitert, um Multi-Tenancy zu unterstützen. Innerhalb von
QVISOR legen die Nutzer ihre Präferenzen für die Priorisierung des Da-
tenverkehrs fest, während QVISOR eine kombinierte Strategie erstellt und
diese auf der zugrunde liegenden Hardware implementiert.

Schließlich stellen wir ACC-Turbo vor, eine neuartige Pulswellen-Denial-
of-Service-Verteidigung, die die Vorteile des netzwerkbasierten Überlas-
tungsmanagements im Kontext der Sicherheit hervorhebt. ACC-Turbo er-
kennt Angriffe bei Leitungsrate und in Echtzeit durch die Anwendung
fortschrittlicher Online-Clustering-Techniken im Netzwerk und entschärft
sie auf paketweiser Basis durch eine programmierbare Paketeinteilung.

v

P U B L I C AT I O N S

This dissertation is based on previously published conference proceedings.
The list of accepted and submitted publications is presented hereafter.

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz, Alexander Dietmüller, Laurent Vanbever

USENIX NSDI, Santa Clara, CA, USA, 2020.

Aggregate-Based Congestion Control
for Pulse-Wave DDoS Defense

Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders,
Laurent Vanbever

ACM SIGCOMM, Amsterdam, Netherlands, 2022.

QVISOR: Virtualizing Packet Scheduling Policies

Albert Gran Alcoz, Laurent Vanbever

ACM HotNets, Cambridge, MA, USA, 2023.

Everything Matters in Programmable Packet Scheduling

Albert Gran Alcoz, Balázs Vass, Pooria Namyar, Behnaz Arzani,
Gábor Rétvári, Laurent Vanbever

USENIX NSDI, Philadelphia, PA, USA 2025.

The following publications were part of my PhD research and are referenced
in this thesis, but they were led by other researchers.

Principles for Internet Congestion Management

Lloyd Brown, Albert Gran Alcoz, Frank Cangialosi, Akshay Narayan,
Mohammad Alizadeh, Hari Balakrishnan, Eric Friedman, Ethan Katz-
Bassett, Arvind Krishnamurthy, Michael Schapira, Scott Shenker

ACM SIGCOMM, Sydney, Australia, 2024.

vii

The following publications were part of my PhD research, but are not
covered in this dissertation.

Reducing P4 Language’s Voluminosity
using Higher-Level Constructs

Albert Gran Alcoz, Coralie Busse-Grawitz, Eric Marty,
Laurent Vanbever

ACM EuroP4, Rome, Italy, 2022.

FitNets: An Adaptive Framework to Learn
Accurate Traffic Distributions

Alexander Dietmüller, Albert Gran Alcoz, Laurent Vanbever

arXiv preprint, arXiv:2405.10931, 2024.

Inter-Cloud QoS with FlexEgress

Sarah McClure, Albert Gran Alcoz, Laurent Vanbever,
Sylvia Ratnasamy, Scott Shenker

Under submission, 2024.

Spoof-Shield: Mitigating IP Spoofing Attacks
at the Internet’s Edge

Vasileios Giotsas, Albert Gran Alcoz, Lucas Castanheira,
Theophilus Benson, Georgios Smaragdakis, Marwan Fayed

Under submission, 2024.

viii

A C K N O W L E D G M E N T S

I am immensely grateful to the broad set of brilliant individuals who have
contributed to shaping this PhD journey. Their support, guidance, and
encouragement have been invaluable. I am deeply indebted to all of them.

First and foremost, I would like to thank Professor Laurent Vanbever
for his mentorship during these years. From my Master’s thesis, to the
internship, to the PhD, I always felt that he believed in me, trusted my
work, and granted me freedom to pursue my interests. Everything I know
about research today is thanks to him. He helped me “push” for the various
papers, opened the doors to his contact network, and offered me counsel
when I needed it the most. Laurent has been the best advisor I could have
asked for. He has changed my life for good, and I will be forever grateful.

I would like to extend my gratitude to all the members of the Networked
Systems Group at ETH Zürich. They have enriched this journey with
enlightening discussions, fun retreats, engaging activities and memorable
trips. Being part of the NSG family has been an honor, and I hope that the
relationship we have forged these years endures over time.

I sincerely thank Professors Nick McKeown and Mohammad Alizadeh for
serving as co-examiners for this thesis. All their comments have contributed
positively to this dissertation. I extend the gratitude to Nick for his warm
reception during my visit at Stanford and Barefoot Networks in 2020.

I am also thankful to my second advisor, Professor Kaveh Razavi, for his
unwavering support and encouragement throughout these years.

During the first years of my doctoral journey, I was privileged to receive
support from Armasuisse and guidance from Vincent Lenders and Martin
Strohmeier. This support enabled me to pursue this PhD. I am indebted to
them and I hope that some day I can reciprocate their generosity.

I am immensely thankful to Professors Sylvia Ratnasamy and Scott
Shenker for hosting me during the summer of 2023. I have long admired
their contributions to our field and working alongside them has been a
dream come true. I extend my appreciation to the Berkeley NetSys Lab
for welcoming me with open arms. Witnessing their groundbreaking work

ix

firsthand was truly inspiring, and I consider myself incredibly fortunate to
have had the opportunity to be a part of their research community.

I would like to thank Marwan Fayed for giving me the chance to expand
my industry experience at Cloudflare. He not only recognized the value of
my work but also granted me complete flexibility to make the most of my
internship. I sincerely appreciate his advice on navigating the next steps of
my career and the wealth of knowledge he generously shared. I extend this
gratitude to the Cloudflare Research team and to the Cloudflarians across
the Infrastructure, DoS, Networking, and Protocols teams with whom I had
the pleasure of interacting. Collaborating with them was both enjoyable
and insightful. I owe a special thank to the Munich office for creating an
unforgettable experience, both within and outside the workplace. I hope
that we can continue ’making the Internet better’ for many years to come.

I deeply appreciate Alexander Dietmüller, Balázs Vass, Gábor Rétvári,
Pooria Namyar and Behnaz Arzani for their priceless contributions to our
efforts in making scheduling programmable and for ensuring mathematical
rigor in our papers. I extend this gratitude to all the researchers with whom
I have had the privilege to collaborate and all the students I have had the
pleasure of supervising. Their work has significantly enriched this thesis.

I am very thankful to Beat Futterknecht for his exceptional administrative
assistance, which has been an invaluable support throughout my journey.
His expertise, and meticulous attention to detail have been a lifesaver amidst
the bureaucratic challenges of this international adventure.

My heartfelt appreciation also goes to all my friends in Zurich, Munich,
Berkeley, and San Francisco, who have each made those places feel like
home. Additionally, I am thankful to my friends in Barcelona for preserving
our long-lasting friendships despite the distance that separates us.

Lastly, but most importantly, I am deeply grateful to my family for their
inconditional love and support throughout this journey.

A vosaltres, papis. Per tot, sempre.
No hi ha paraules que expressin tot el que us estimo.

Albert Gran Alcoz
June 2024

x

C O N T E N T S

Publications vii

Acknowledgments ix

1 introduction 1

2 sp-pifo : programmable scheduling on existing devices 7

2.1 Introduction . 7

2.2 Overview . 10

2.3 SP-PIFO design . 13

2.4 Gradient-based algorithm . 16

2.5 Our approach: SP-PIFO . 24

2.6 Implementation . 35

2.7 Evaluation . 36

2.8 Discussion . 41

2.9 Related work . 43

2.10 Conclusions . 44

3 packs : admission-aware programmable scheduling 45

3.1 Introduction . 45

3.2 Background . 47

3.3 Overview . 50

3.4 PACKS design . 53

3.5 Theoretical analysis of PACKS 64

3.6 Performance analysis using MetaOpt 68

3.7 Implementation . 74

3.8 Evaluation . 76

3.9 Related work . 84

3.10 Conclusions . 84

xi

xii contents

4 qvisor : multi-tenant programmable scheduling 85

4.1 Introduction . 85

4.2 Motivation . 88

4.3 QVISOR overview . 91

4.4 Preliminary evaluation . 94

4.5 Looking forward . 96

4.6 Related work . 97

4.7 Conclusion . 98

5 acc-turbo : in-network denial-of-service defense 99

5.1 Introduction . 99

5.2 Background . 102

5.3 Overview . 107

5.4 Traffic-aggregate inference . 109

5.5 Controlling aggregates . 116

5.6 Implementation . 117

5.7 Hardware-based evaluation . 118

5.8 Simulation-based evaluation . 123

5.9 Limitations . 128

5.10 Discussion . 130

5.11 Related work . 132

5.12 Conclusions . 133

6 conclusion and outlook 135

6.1 Future work . 136

bibliography 141

Own publications . 141

References . 141

1
I N T R O D U C T I O N

October 1986. Berkeley, California: The ARPANET, the first version of the
Internet, has been operational for 20 years. It connects approximately 80

computers across campuses in the United States of America and Europe [10].
The new Transmission Control Procotol (TCP) has been incorporated into
the Berkeley Unix operating system, BSD 4, and the network is experiencing
significant growth [11]. It would still take another two years until the World
Wide Web is invented, marking the Internet’s transition to mainstream use.

At the Lawrence Berkeley Lab, researchers identify a significant drop
in data throughput on the link connecting the lab with the University of
California, Berkeley. Despite being a connection of just 400 meters and two
hops, the bandwidth drop is on the order of a thousand: from 32 Kbps to 40

bps. John Nagle had already anticipated it two years earlier [12]. They are
experiencing the first-ever congestion collapse in the Internet’s history [13].

Over the last decades, the Internet has become the largest system ever
built, connecting more than 20 billion devices and playing a big role in the
world’s global economy [14]. Despite its radical evolution, some challenges
from its early days remain unchanged. One of them stands out: congestion.

Congestion is an inherent condition in the Internet’s design that stems
from an imbalance between the capacity of a given link and its traffic
demands. It occurs when multiple data streams compete for the limited
bandwidth of the link, generating more packets than it can actually process.
As the link becomes oversubscribed, excess packets are temporarily buffered,
leading to increased packet latency. If the situation persists, the router’s
buffer space eventually becomes exhausted, resulting in packet drops.

In its most basic form, congestion occurs due to three main factors: (i)
the limited resources of the network infrastructure or the need for it to run
at high efficiency, (ii) the distributed nature of the Internet architecture,
and (iii) the bursty nature of its transmissions. Indeed, to achieve a reason-
able efficiency, the Internet relies on packet-level statistical multiplexing,
allowing multiple connections to share the same resources. This allows

1

2 introduction

networks to operate at high utilization, but induces the risk of congestion.
At the same time, end-hosts act autonomously and independently of each
other. Often, they require access to the same network resources, having
to compete for them, which also leads to contention. Finally, even when a
single end-host is active, its transmission patterns tend to be bursty due to
the mismatch between application-level message sizes and network-level
packet sizes, which may itself overload the resources of forwarding devices.

Since the first congestion collapse in 1986, researchers have been aware of
the negative implications of congestion on the Internet’s performance. As a
result, they have proposed a broad set of techniques to proactively manage
it. These techniques can be classified into two main categories: end-to-end
control mechanisms and in-network congestion management techniques.

End-to-end control mechanisms notify end-hosts of network congestion,
allowing them to adjust their sending behavior to prevent congestion from
worsening. Examples include congestion control, which dynamically adjusts
the number of in-flight packets a sender can maintain based on observed
network conditions such as latency or packet loss; flow control, which adapts
the sender’s transmission rate based on the receiver’s processing capacity;
and active queue management, which uses network logic to explicitly notify
end-hosts of congestion or enhance the notification signals (e.g., through
proactive packet dropping or tagging), accelerating their response times.

While these techniques play a role in preventing long-term congestion,
they have two significant limitations. First, their feedback loop lacks the
speed required to address congestion effects in the short term (e.g., within
milliseconds) or during transient congestion events like microbursts. Second,
they rely on end-hosts’ willingness to adjust their sending behavior upon
notification. While this may hold in specific scenarios (e.g., within a private
network), it is not always the case on today’s Internet.

Despite numerous efforts by the networking community to encourage
the adoption of “friendly” congestion-control algorithms, major Internet
players still rely on aggressive congestion-control algorithms to enhance
their performance in significant portions of their traffic [5]. Even more
concerning, malicious actors have discovered that they can exploit limited
bandwidth resources at specific network bottlenecks, effectively weaponiz-
ing congestion to disrupt the operations of other entities. These attack
vectors, known as denial-of-service attacks, occur thousands of times daily
and occasionally manage to disrupt the connectivity of entire countries [15].

introduction 3

In-network congestion management techniques aim to overcome the limita-
tions of end-to-end controls. They do so by running directly in the network
(i.e., within a router), processing traffic at line-rate, and quickly making
local decisions to mitigate the impact of congestion as soon as it emerges.
These techniques are typically responsible for three key decisions: admission
control, determining which packets to accept into the buffer; buffer manage-
ment, deciding how to allocate buffer space among admitted packets; and
scheduling, selecting which packets to forward next from those in the buffer.

Extensive research over decades has also focused on these techniques,
resulting in the proposal of numerous algorithms. Unlike end-to-end control
mechanisms, the primary barrier hindering the widespread adoption of
in-network congestion management techniques has been their reliance on
dedicated hardware support. Implementing such techniques in the network
requires the development of new ASIC designs, which is a time-consuming
and expensive process [16]. Consequently, out of the myriad techniques
proposed, only a handful have successfully transitioned to production.

Fortunately, this landscape has recently changed thanks to two key contri-
butions that have the potential to revolutionize how we approach congestion
management: programmable scheduling and programmable data planes.

Programmable scheduling aims at representing a wide range of in-network
congestion management techniques [17–20] within a common abstraction 1.
The key insight is that, if we develop an abstraction that can generalize
the behavior of multiple techniques, and which can be implemented on
hardware, we can use it to execute any of the individual techniques without
requiring new ASIC designs. Consequently, such an abstraction facilitates
both the design of new techniques and their deployment on hardware.

The first programmable scheduling abstraction is “PIFO” [20], which
relies on the observation that we can divide most in-network congestion
management techniques into two components: a ranking algorithm that
determines the priority for processing each packet (available at enqueue),
and a queue structure capable of admitting packets, allocating buffer space,
and scheduling packets based on their determined priority. One natural
candidate for such a queue structure is the Push-In First Out (PIFO) queue,
which can sort packets at line rate by “pushing” them into arbitrary posi-
tions based on their ranks and serving them from the head of the queue.

1 Despite its name, programmable scheduling extends beyond mere scheduling; it integrates the
three primary types of in-network congestion management techniques—admission control,
buffer management, and packet scheduling—into a cohesive and unified framework.

4 introduction

Thus, PIFO queues are proposed as the queuing structure enabling pro-
grammable scheduling and give the abstraction its name. The value in the
PIFO abstraction is in its generalization: it can represent many common
work-conserving scheduling algorithms such as weighted fair queuing,
strict priorities, and earliest-deadline first [20]. The main challenge of the
PIFO abstraction, however, is its hardware implementation. Implementing
PIFO queues in hardware is difficult because they must sort packets at
line rate and may need to drop high-rank packets after they have been
enqueued (e.g., if a low-rank packet arrives).

Programmable data planes have been recently proposed as a new generation
of packet processing pipelines that can be flexibly customized to achieve
different functionalities while maintaining high-speed packet processing
at terabits per second (Tbps) [21]. These devices represent a paradigm
shift compared to conventional fixed-function switches, as they enable the
deployment of new network functions without the need for new hardware,
thereby significantly reducing the time and costs associated.

In this dissertation, we argue that the benefits of programmable data
planes can be leveraged to bridge the gaps in programmable scheduling.
The strategic integration of these two techniques can pave the way to
programmable in-network congestion management on existing devices.
Furthermore, we argue that, upon achieving this integration, in-network
congestion management can play a pivotal role in enhancing the perfor-
mance and security of the modern Internet. It has the potential to effectively
address even the most challenging types of congestion, which pose signifi-
cant threats to the stability of the current Internet architecture.

To realize these goals, we introduce four systems: (i) SP-PIFO and PACKS,
which approximate the PIFO abstraction on programmable data planes,
to enable programmable in-network congestion management on existing
devices; (ii) QVISOR, which extends the previous frameworks to accom-
modate multi-tenant networks such as data centers or cloud environments;
and (iii) ACC-Turbo, which leverages the benefits of in-network congestion
management to mitigate the latest types of denial-of-service attacks.

The rest of the dissertation is organized as follows:

In Chapter 2, we introduce SP-PIFO, an abstraction to support in-network
congestion management on existing programmable data planes. SP-PIFO
achieves this by emulating the behavior of PIFO queues atop a collection
of strict-priority queues, available on existing devices. It dynamically ad-
justs the mapping between packet ranks and priority queues to minimize

introduction 5

scheduling errors compared to an ideal PIFO queue. SP-PIFO operates on a
per-packet basis and does not require any prior traffic knowledge.

In Chapter 3, we present PACKS, a programmable packet scheduler that
outperforms SP-PIFO in emulating the behavior of PIFO queues. PACKS
also runs on top of a set of priority queues but it uses packet-rank informa-
tion and queue-occupancy levels during enqueue to determine whether to
admit each incoming packet and how to best map it to the available queues.
By combining an admission control and a queue-mapping mechanism,
PACKS effectively captures all the necessary behaviors of a PIFO queue.

In Chapter 4, we introduce QVISOR, an extension of the previous frame-
works to support multiple congestion-management policies simultaneously,
especially tailored for multi-tenant networks. QVISOR enables tenants to
define their preferred scheduling policies, and automatically merges and
deploys them on top of the underlying hardware resources, streamlining
the process and ensuring efficient resource utilization.

In Chapter 5, we present ACC-Turbo, an in-network congestion manage-
ment technique designed to mitigate the latest form of distributed denial-
of-service (DDoS) attacks observed in the wild—pulse-wave DDoS attacks.
ACC-Turbo infers attack patterns by applying online-clustering techniques
in the network and mitigates them using programmable scheduling.

In Chapter 6, we conclude the dissertation by summarizing our findings,
identifying open problems, and proposing new research directions in the
field of in-network congestion management for security and performance.

2
S P - P I F O

2.1 introduction

In this chapter, we introduce SP-PIFO, a programmable scheduling abstrac-
tion designed to operate on existing commodity switches.

Programmable scheduling allows operators to “program” their desired
scheduling policies, by tagging packets with ranks, which indicate their
scheduling priority. Programmable schedulers process these packets, and
schedule them following the order of their ranks. The main challenge of
implementing programmable packet scheduling, is to find an abstraction
which is flexible enough to express a wide variety of scheduling algorithms
and yet can be implemented efficiently in hardware. In [20], Push-In First-
Out (PIFO) queues were proposed as such an abstraction. PIFO queues
allow packets to be pushed into arbitrary positions in the queue (according
to the packets rank) while only draining packets from the head.

While PIFO queues enable programmable scheduling, implementing
them in hardware is hard due to the need to arbitrarily sort packets at line
rate. [20] described a hardware design (not implementation) supporting
PIFO on top of Broadcom Trident II [22]. While promising, realizing this
design in an ASIC is likely to take years [23], not including deployment.
Even ignoring deployment considerations, the design of [20] is limited as it
only supports ~1000 flows and relies on the assumption that packet ranks
increase monotonically within each flow, which is not always the case.

Our work In this chapter, we ask whether it is possible to approximate
PIFO queues at scale, in existing programmable data planes. We answer
positively and present SP-PIFO, an adaptive scheduling algorithm that
closely approximates PIFO behaviors on top of widely-available Strict-
Priority (SP) queues—at line rate, at scale, and on existing devices. The key
insight behind SP-PIFO is to dynamically adapt the mapping between
packet ranks and available strict-priority queues in order to minimize
the amount of scheduling errors relative to a hypothetical ideal PIFO
implementation. We present a mathematical formulation of the problem

7

8 sp-pifo : programmable scheduling on existing devices

Incoming packets sequence

already enqueued

341452

PIFO queue (theoretical)

1234452 123445

SP-PIFO (approximation)

445

312

suboptimal output

strategy A
[1–3]

[4–5]
312445

2

3445

12

strategy B
[1–2]

[3–5]

2

123445

optimal output

Figure 2.1: SP-PIFO approximates the behavior of PIFO queues by adapting how
packet ranks are mapped to priority queues.

and derive an adaptation technique which closely approximates the optimal
queue mapping without any traffic knowledge in advance.

Example First, we provide an intuition how SP-PIFO approximates PIFO
behaviors using SP queues in Fig. 2.1. The example illustrates the scheduling
behavior of two SP-PIFO systems which receive the input packet sequence

341452 . We write the first packet being enqueued on the far-right
(3) and the last one on the far-left (2). Similarly to [20], we also consider
that lower-rank packets have higher priority (and use corresponding color
codes). The figure illustrates the scheduling decision of each system for the
sixth packet (2), assuming the first 5 have been enqueued already.

A PIFO queue always schedules incoming packets perfectly, leading to
the sorted output 123445 . In contrast, the quality of the scheduling
of a SP-PIFO scheme depends on: (i) the number of SP queues available
(here, two); and (ii) the mapping of packet ranks to those queues. Fig. 2.1
illustrates two such mapping strategies. Strategy A maps ranks 1–3 (resp.
4–5) to the highest (resp. lowest) SP queue, while Strategy B maps ranks
1–2 (resp. 3–5) to the highest (resp. lowest) SP queue. We see that Strategy
B is capable of perfectly sorting the input sequence, i.e. it behaves like a

2.1 introduction 9

perfect PIFO queue. In contrast, Strategy A leads to sub-optimal packet
inversions, e.g. 1 is incorrectly scheduled after 3 .

Insights The key challenge in SP-PIFO is to design adaptation strategies
that can: (i) closely approximate PIFO behavior; and (ii) be implemented in
programmable data planes. These are hard challenges as the best mapping
strategy depends on the traffic mix and the actual ranks being enqueued,
both of which can change on a per-packet basis.

SP-PIFO approximates the best mapping strategy by dynamically shifting
the ranks mapped to each queue to reduce the scheduling mistakes it
observes in real time.

We show that SP-PIFO’s adaptation strategy achieves almost the same
performance as provably-correct adaptation strategies while being imple-
mentable in programmable data planes.

Performance We use SP-PIFO to implement a wide variety of scheduling
objectives ranging from minimizing flow completion times to achieving
max-min fairness. For all cases, we show that SP-PIFO achieves performance
on-par with the state-of-the-art. We also demonstrate that SP-PIFO runs at
line rate on existing programmable hardware, at line rate, by deploying it
on a Intel Tofino programmable switch.

Contributions The main contributions of this chapter are:

• A novel approach for approximating PIFO queues on top of a set of
strict-priority queues (§2.3).

• A greedy, gradient-based algorithm which provably converges to the
optimal queue mapping (§2.4).

• An adaptation algorithm which dynamically adapts the queue map-
ping according to the network conditions, closely-approximating an
optimal scheme (§2.5).

• An implementation of SP-PIFO in Java and P4 (§2.6).

• A comprehensive evaluation showing SP-PIFO effectiveness in ap-
proximating perfect PIFO behavior with as little as 8 queues and on
actual hardware switches (§2.7).

10 sp-pifo : programmable scheduling on existing devices

2 1

4 4 3

5

341452 123445

Queue 1

Queue 2

Queue n

0

3

5

queue bounds
q = {0, 3, 5}

Mapping

Adaptation

Strategy #1
Gradient Descent

(Section 2.3)

Strategy #2
SP-PIFO

(Section 2.5)

Priority
Queuing

Incoming packets Outgoing packets

decision
r ≥ qi?

(bottom-up)

[
q1 = 0, q2 = 3, q3 = 5

]
Figure 2.2: Overview of SP-PIFO data-plane pipeline.

2.2 overview

In this section, we provide an informal overview of how SP-PIFO manages
to closely approximate PIFO behaviors. At a high level, SP-PIFO is a priority-
queuing scheduling discipline (see Fig. 2.2) which maps incoming packets
to n priority queues. SP-PIFO assumes that packets are tagged with a rank
indicating the intended scheduling order, with lower ranks being preferred
over higher ones. Packets enqueued in a queue are scheduled according to
their order of arrival (i.e., First-In First-Out), after all packets enqueued in
any higher-priority queue have been scheduled. Unlike classical priority-
queuing disciplines [24], SP-PIFO dynamically adapts the mapping between
the packet ranks and the priority queues according to the observed network
conditions. In particular, SP-PIFO adapts the mapping so as to minimize
the scheduling “unpifoness”, that is, the number of times a higher-rank
packet is scheduled before an enqueued lower-rank packet. We refer to such
scheduling mistakes as inversions.

Mapping SP-PIFO maps each incoming packet to queues according to the
queue bounds. These queue bounds identify, for each queue i, the smallest
packet rank that can be enqueued. Whenever a packet is received, SP-
PIFO scans the queue bounds bottom-up, starting from the lowest-priority
queue, and enqueues the packet in the first queue with a bound smaller
or equal to the packet rank. Given a packet with rank r ∈ Z≥0 and n
priority queues, let q be the vector of queue bounds (q1, · · · , qn) ∈ Zn such
that 0 ≤ q1 ≤ q2 ≤ · · · ≤ qn. For instance, consider a vector q = {0, 3, 5}

2.2 overview 11

indicating the bounds of 3 priority queues, with 0 (resp. 5) indicating the
bound of the highest- (resp. lowest-) priority queue. Given q, SP-PIFO
enqueues packets with rank 2 in the first (highest-priority) queue, packets
with rank 3 in the second queue and packets with rank 10 in the third
(lowest-priority) queue.

Adaptation “Unpifoness” can be minimized across multiple packets, e.g.
by monitoring the rank distribution over periodic time windows and adapt-
ing the bounds through a gradient descent, or on a per-packet basis (see
Fig. 2.2). Depending on the characteristics of the rank distribution, the first
strategy can provably converge to the optimal mapping. Unfortunately, its
requirements exceed the capabilities of existing programmable data planes.
SP-PIFO addresses these two limitations: it works for any rank distribution,
on existing hardware. SP-PIFO dynamically adapts q such that the result-
ing scheduling closely approximates an ideal PIFO queue, minimizing the
amount of observed inversions by dynamically shifting the ranks mapped
to each queue. SP-PIFO operates online, without prior knowledge of the
incoming packet ranks.

SP-PIFO’s adaptation mechanism consists of two stages: a push-up stage
where future low-rank (i.e., high-priority) packets are pushed to higher-
priority queues; and a push-down stage where future high-rank (i.e., low-
priority) packets are pushed down to lower queues.

Stage 1: Push-up Whenever SP-PIFO enqueues a packet, it updates the
corresponding queue bound to the rank of the enqueued packet. Doing
so, SP-PIFO aims at ensuring that future lower-ranked packets will not be
enqueued in the same queue, but in a more preferred one. Intuitively, SP-
PIFO “pushes up” packets with low ranks to highest-priority queues, where
they will be drained first. Of course, as the number of queues is finite—and
often, much smaller than the number of ranks—this is not always possible,
leading to inversions.

Stage 2: Push-down Whenever SP-PIFO detects an inversion in the
highest-priority queue (i.e., the packet rank is smaller than the highest-
priority queue bound), it decreases the queue bound of all queues. Doing
so, SP-PIFO ensures that future higher-rank packets will be enqueued
in lower-priority queues. Intuitively, after an inversion, SP-PIFO “pushes
down” packets with high ranks to the lower-priority queues in order to pre-
vent them from causing inversions in the highest-priority queue. SP-PIFO
decreases the queue bounds according to the magnitude of the inversion,

12 sp-pifo : programmable scheduling on existing devices

Reacting to inversions

0

0
3

3

0

3
4

34

0

4
1

34

11

4
4

344

11

4
5

3445

11

5
2

3445

122

5
1

3445

1211

5− 1 = 4

3414521

Incoming packets

Figure 2.3: SP-PIFO mapping and adaptation mechanisms.

i.e. the difference between the packet rank and the corresponding queue
bound: the bigger the inversion, the more ranks are pushed down.

Example Fig. 2.3 illustrates the execution of SP-PIFO with two priority
queues when receiving 3414521 . Without loss of generality, we con-
sider that the queue bounds are initialized to 0. SP-PIFO enqueues the first
packet (3) in the lowest-priority queue and updates its queue bound to
3. Likewise, SP-PIFO also enqueues the second packet, 4 , in the lowest-
priority queue. As its rank (4) is higher than the queue bound (3), it then
updates the queue bound to 4.

The same process is applied to the subsequent packets until the second
1 is encountered, creating an inversion (grayed area in Fig. 2.3). Indeed,
SP-PIFO enqueues 1 in the highest-priority queue after having enqueued
2 . Once the inversion is detected, SP-PIFO adapts the queue bounds to

1 and 5− 1 = 4, respectively. Observe that if 1 and 2 keep arriving, the
bound of the lowest-priority queue will decrease, eventually reaching 2. At
this point, future 1 will not experience inversions anymore as they will
have a dedicated queue.

2.3 sp-pifo design 13

2.3 sp-pifo design

In this section, we describe the theoretical basis supporting the design of
SP-PIFO. We first phrase the problem of finding the optimal queue bounds
as an empirical risk minimization problem in which a loss function—how
“unpifo” the current mapping is—is minimized (§2.3.1). We then develop
an algorithm based on gradient descent which provably converges to the
optimal bounds for stable rank distributions (§2.3.2). We show how the
convergence requirements make the algorithm impractical (§2.4.4). In the
following, we present SP-PIFO which relaxes the optimality requirements
at the benefit of practicality (§2.5).

2.3.1 Problem statement

Let U : Rn × R≥0 → R≥0 be a loss function such that U (q, r) quantifies the
approximation error of scheduling a packet with rank r based on queue
bounds q compared to an ideal PIFO queue. Intuitively, a smaller loss
equals a better approximation. Note that U stands for unpifoness.

The adaptation goal is to find the optimal queue bounds q∗ that minimize
the expected loss for all possible ranks. Let Q be the space of all valid bound
vectors and R the distribution of packet ranks, then the optimal queue
bounds q∗ are:

q∗ = arg min
q∈Q

E
r∼R

[U (q, r)] (2.1)

Finding q∗ directly is intractable though. Indeed, evaluating the expected
loss U is impossible since the distribution of packet ranks R is unknown.
We address this problem by considering the empirical loss Uemp observed
over a set D of i.i.d. rank samples. Doing so, we phrase the problem of
finding q∗ as an empirical risk minimization (ERM) problem:

q∗ = arg min
q∈Q

1
|D| ∑

r∈D
Uemp(D, q, r) (2.2)

Evaluating empirical losses For a given rank r, we measure the empirical
loss Uemp as the expected number of inversions that r would encounter, if the
rank distribution D was scheduled given the queue bounds q, weighted by
the cost that each inversion would cause to the system performance. This
cost can be just a constant value, if all inversions are treated the same, or it

14 sp-pifo : programmable scheduling on existing devices

can measure the magnitude of the inversion (i.e., how big is the difference
between ranks causing it). Since r receives inversions only from higher
ranks in the distribution, Uemp can be rewritten as:

Uemp(D, q, r) =
1
|D| ∑

r′∈D
r′>r

costq(r′, r) (2.3)

Having formulated the adaptation goal as an empirical risk minimization,
we aim to solve it by analyzing how changes in q influence the empirical
risk, and trying to design an iterative algorithm capable of converging to
the minimal risk.

2.3.2 Gradient-based adaptation algorithm

We first introduce a greedy, gradient-based algorithm, which provably con-
verges to the optimal queue bounds q∗ provided that the rank distribution
stays constant. The algorithm builds upon the fact that inversions cannot
occur between ranks mapped to different priority queues. This allows to
instantiate the empirical risk minimization in eq. 2.2 at a queue level by
simply adding the individual losses of each queue. Letting U (qi) be the loss
function corresponding to the queue with bound qi, this is:

q∗ = arg min
q∈Q

∑
qi∈q
U (qi) (2.4)

Letting pD(r) and pD(r′) be the empirical probability of ranks r and r′,
respectively, both mapped to the queue with bound qi, we can define the
unpifoness of the queue as:

U (qi) = ∑
qi≤r<qi+1
r<r′<qi+1

pD(r) · pD(r′) · cost(r′, r) (2.5)

Overview Considering this problem instantiation, the greedy algorithm
first computes the rank distribution over a set of k packets before minimiz-
ing the expected per-queue unpifoness by incrementing (resp. decrement-
ing) the queue bounds. Specifically, after processing the k-th packet, the
greedy algorithm selects, for each queue, the bound that most decreases
the overall system unpifoness. Although comparing the performance of

2.3 sp-pifo design 15

Incoming packets

adaptation window (k = 7)

3414512.

3112

445

112

3445

341412

5

unpifoness = 8α

improving allocation
8α < 9α

worsening allocation
25α > 9α

current allocation

unpifoness = 25α

unpifoness = 9α

1

4

1

3

1

5

[q1 = 1, q2 = 3]
(updated bounds)

r1 r2 r3 r4 r5

0

1/7

2/7

packet rank distribution

Figure 2.4: The gradient-based algorithm greedily minimizes the unpifoness.

all bound combinations is not possible, we introduce an efficient compu-
tation mechanism that allows to prune the search space while preserving
convergence. We prove the optimality of the algorithm in §2.5.2.

Example We illustrate the execution of the algorithm in Fig. 2.4. We assume
a system with two priority queues and assume that the packet sequence

3414512 is received over and over again. We set the adaptation win-
dow k to 7 packets. We initialize the queue bounds to 1 and 4.

The algorithm starts by computing the observed rank distribution after
receiving the 7-th packet. Here, it estimates the probability of receiving
a packet of rank 1 as p(1) = 2/7. Similarly, p(2) = 1/7, p(3) = 1/7,
p(4) = 2/7 and p(5) = 1/7. It then computes the expected unpifoness
that this distribution would have generated with the current queue bounds
(eq. 2.3). For the higher-priority queue, this is U1 = p(1) · p(2) · cost(2, 1) +
p(1) · p(3) · cost(3, 1) + p(2) · p(3) · cost(3, 2) = (2/7 · 1/7) · (2− 1) + (2/7 ·
1/7) · (3 − 1) + (1/7 · 1/7) · (3 − 2). This equation can be simplified to
U1 = 7α where α = (1/7 · 1/7). Similarly, U2 = p(4) · p(5) · cost(5, 4) = 2α,
adding up a total of U = 9α.

16 sp-pifo : programmable scheduling on existing devices

Next, the algorithm compares the expected unpifoness that would be
obtained if the queue bound was incremented (gradient up) or decremented
(gradient down) and adapts the queue bound in the direction resulting in
the biggest decrease of unpifoness.

Gradient up Incrementing q2 from 4 to 5 means that only rank {5} would be
mapped to the lower-priority queue. The resulting unpifoness is U = 25α.
The higher unpifoness (25α instead of 9α) indicates that, by incrementing
q2, the system gets further away from the PIFO behavior. Note that the
increase in unpifoness comes from the higher-priority queue as rank {5}
gets an exclusive queue.

Gradient down In contrast, the system unpifoness reduces from 9α to 8α
when decrementing q2 from 4 to 3. Indeed, U1 = p(1) · p(2) · cost(2, 1) =
2α, and U2 = p(3) · p(4) · cost(4, 3) + p(3) · p(5) · cost(5, 3) + p(4) · p(5) ·
cost(5, 4) = 6α, adding up to U = 8α. As such, the adaptation mechanism
updates the queue bound: q2 = 3.

The above process repeats every 7-th packet, estimating the rank distri-
bution before greedily adapting the queue bounds.

2.4 gradient-based algorithm

In this section, we detail the greedy iterative algorithm presented in §2.3.2
and prove how it converges to the optimal solution. Then, we show how
to effectively prune the search space making computation efficient while
keeping convergence (§2.4.1). Finally, we analyze its implementation (§2.4.2)
and convergence requirements (§2.4.3).

The algorithm (alg. 1) iteratively minimizes the risk by adjusting queue
bounds, one queue and one step at a time, until reaching convergence. At
each iteration, the algorithm predicts, for every qi, whether moving the
bound by one (in either direction) decreases the expected risk, and moves
the bound in the direction of maximum decrease. In the following, we
discuss first, how the algorithm can predict the expected change in risk,
and second, why checking a single step is sufficient to converge.

Risk difference In §2.3.2, we demonstrated that the risk can be analyzed on
a per-queue basis from the cost of mapping packets with different ranks to
the same queue. Consequently, changes in the risk resulting from changing
the bound vector q can be analyzed by comparing the risk difference in

2.4 gradient-based algorithm 17

Algorithm 1 Greedy optimization
Require: k: Step size, qinit: Initial bounds

1: procedure Adaptation

2: D ← ∅
3: q← qinit ▷ Initialize bounds
4: for all p: incoming packet do
5: D ← D ∪ {rank(p)} ▷ Collect samples
6: if |D| = k then ▷ Adapt bounds
7: P ← ComputeRankProbabilites(D)
8: repeat
9: q← UpdateMapping(q, P)

10: until q converges
11: D ← ∅ ▷ Reset samples
12: end if
13: end for
14: end procedure
15: function UpdateMapping(q, P)
16: for qi ∈ q do
17: ∆+ ← RiskFromIncrement(qi, P)
18: ∆− ← RiskFromDecrement(qi, P)
19: if (∆+ ≤ 0) and (∆+ ≤ ∆−) then
20: qi ← qi + 1
21: else if (∆− ≤ 0) and (∆− < ∆+) then
22: qi ← qi − 1
23: end if
24: end for

return q
25: end function

affected queues. To be precise, every change of a single element qi in q
affects two queues, queue i and i− 1, as ranks are either moved from i to
i− 1 (increase in qi) or moved from i− 1 to i (decrease in qi).

Theorem 2.1. Let r∗ = qi, let Qi be the set of ranks mapped to queue i (before any
changes). Increasing qi by 1 changes the risk by:

∆+
i = p(r∗)(∑

r∈Qi−1

p(r)cost(r∗, r)− ∑
r∈Qi

p(r)cost(r, r∗)) (2.6)

18 sp-pifo : programmable scheduling on existing devices

Let r∗ = qi − 1. Decreasing qi by 1 changes the risk by:

∆−i = p(r∗)(∑
r∈Qi

p(r)cost(r∗, r)− ∑
r∈Qi−1

p(r)cost(r, r∗)) (2.7)

Proof: Increasing qi removes the lowest rank from queue i, which now
becomes the highest rank in queue i− 1. As the new highest rank in queue
i− 1, it causes possible inversions and therefore risk for all other ranks in
queue i− 1, resulting in the first, positive term in eq. 2.6. Conversely, as
the lowest rank in queue, it was prone to receive inversions from any other
element in the queue, supposing a risk in queue i that is removed with the
change. This risk reduction results in the second, negative, term.

The proof for decreasing qi is symmetrical, with the main difference that
now, rank qi−1 is the one changing from queue i− 1 to queue i.

Greedy step Based on the theory presented, the algorithm computes the
risk and either (for every qi):

(a) Does not move qi, if neither incrementing or decrementing reduces
the expected risk.

(b) Increments qi, if incrementing decreases the risk more than decre-
menting.

(c) Decrements qi, if decrementing decreases the risk more than incre-
menting.

This effectively prunes the search space. At every iteration, the algorithm
only requires a constant amount of comparisons, and it does not explore di-
rections further in case they increase the risk. In the following, we show why
deciding not to explore a direction further after a single step is reasonable.

Theorem 2.2. Let ∆+
i and ∆−i denote the prospective in- and decreases from

incrementing/decrementing qi by 1. Let ∆++
i and ∆−−i denote the in- and decreases

from incrementing/decrementing qi by more than 1. Let the cost function used to
compute the differences be non-decreasing in |r∗ − r| and 0 if and only if r∗ = r.
Then:

1. If ∆+
i > 0, then ∆++

i > 0.

2. If ∆−i > 0, then ∆−−i > 0.

2.4 gradient-based algorithm 19

Proof:

1: If ∆+
i > 0,

∑
r∈Qi−1

p(r)cost(r∗, r) > ∑
r∈Qi

p(r)cost(r, r∗) (2.8)

Let r∗∗ = qi + 1, i.e. the second-lowest rank in queue i, which would
be moved if we move the queue bound by more than 1. Moving both
r∗ and r∗∗ would cause the following change in risk:

∆++
i = (2.9)

p(r∗)(∑
r∈Qi−1

p(r)cost(r∗, r)− ∑
r∈Qi

p(r)cost(r, r∗))+ (2.10)

p(r∗∗)(∑
r∈Qi−1

p(r)cost(r∗∗, r)− ∑
r∈Qi

p(r)cost(r, r∗∗)) (2.11)

Note that we can omit the cost between r∗ and r∗∗ in eq. 2.11: as the
cost function is by definition symmetric, the additional increase in
the left-hand term is exactly equal in magnitude to the additional
decrease in the right-hand term, and thus they cancel each other. Thus
we omit the term to not clutter the notation. Next, again by definition
of the cost function, if r∗∗ > r∗ > r, then cost(r∗∗, r) ≥ cost(r∗, r), and
if r > r∗∗ > r∗, then cost(r, r∗∗) ≤ cost(r, r∗). Additionally, we note
that the order of arguments in the cost function does not matter, as it
is symmetrical. Applied to the risk of the lower- and higher-priority
queue respectively (eq. 2.11), this gives:

∑
r∈Qi−1

p(r)cost(r∗∗, r) ≥ ∑
r∈Qi−1

p(r)cost(r∗, r)

∑
r∈Qi

p(r)cost(r, r∗∗) ≤ ∑
r∈Qi

p(r)cost(r, r∗)
(2.12)

And in conclusion, the left hand term in eq. 2.11 is larger than the left
hand term in eq. 2.10, and the right hand term in eq. 2.11 is smaller
then the left hand term in eq. 2.10. Consequently, if eq. 2.10 is positive,
eq. 2.11 must also be positive (as probabilities are always positive),
proving that if one step does increase the risks, two steps will also
increase the risk. The exact same procedure can be repeated for larger
step sizes, which we omit here.

2: This proof is conceptually identical to the other direction, and we will
thus omit it. The guiding principle is the same: moving more than

20 sp-pifo : programmable scheduling on existing devices

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
e
r
o
f
p
a
c
k
e
ts

Rank values

 0
 20
 40
 60
 80

 100

0 200k 400k 600k 800k

Q
ue

ue
 b

ou
nd

s

Packet arrivals

Queue0
Queue1

Queue2
Queue3

Queue4
Queue5

Queue6
Queue7

Figure 2.5: Greedy convergence for uniform rank distribution.

one rank can only cause higher increase in risk in the queue the ranks
are moved to, and lower decrease in risk in the queue the ranks are
taken from, compared to the previous ranks. Thus, if already moving
one rank causes a higher increase in risk in one queue than decrease
in the other, moving additional ranks does not change this.

Conclusion We have explained how the greedy algorithm only requires
exploring the direction which offers a potential decrease in risk, and we
have proved how the risk does not decrease with the distance between
ranks (it cannot be better to have a bigger inversion, only equal or worse).
This allows the greedy algorithm to quickly decide if a direction is not
worth investigating, effectively pruning the search space.

2.4.1 Efficient computation

As tracking the complete rank distribution at each iteration might be too
expensive in terms of memory, and repeating the adaptation until conver-
gence too costly in terms of complexity, we show in the following lines
how the mathematical formulation of the problem allows a simplified
implementation which only requires 4 counters per queue.

2.4 gradient-based algorithm 21

0

2

4

6

8

 0 10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
6)

Iteration Number

k = 50
k = 250
k = 500

k = 1000
k = 2500
k = 5000
k = 7000

(a) Convergence vs.
adaptation window

0

2

4

6

8

10

 0 10 20 30 40 50 60 70 80 90 100

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
5)

Iteration Number

Q = 8
Q = 12
Q = 16
Q = 20
Q = 24
Q = 28
Q = 32

(b) Convergence vs.
number of queues

0

4

6

8

10

12

 0 100 200 300 400 500 600 700 800 900 1000

Ex
pe

ct
ed

 U
np

ifo
ne

ss
 (·

10
7)

Iteration Number

R = 100
R = 200
R = 400
R = 600
R = 800

R = 1000

(c) Convergence vs.
rank range

Figure 2.6: Greedy algorithm adaptation microbenchmark.

From the empirical probability definition, pD(r) = |rD |/|D|, we can
rewrite eq. 2.6 and eq. 2.7 as:

∆+
i =

|qi|
|D|2 · (∑

r∈Qi−1

|r|cost(qi, r)− ∑
r∈Qi

|r|cost(r, qi))

∆−i =
|qi − 1|
|D|2 · (∑

r∈Qi

|r|cost(qi − 1, r)− ∑
r∈Qi−1

|r|cost(r, qi − 1))
(2.13)

Since the queue bound qi stays constant throughout the adaptation win-
dow, each of the summations in eq. 2.13 can be implemented through
a counter which gets updated every time a new packet arrives, with its
carried rank. Note that the number of counters required increases linearly
with the number of queues. Also, observe that the counters in eq. 2.13, only
allow the computation of one step in the gradient. However, this is enough
since the one-step version manages to converge in practice (cf. Fig. 2.5).

2.4.2 Implementation requirements

With the computation presented in §2.4.1, implementing the gradient-based
algorithm on top of n priority queues, requires n registers for queue-
bound storage and (4 · n) registers for the gradient computation. The
mapping process §2.2 requires packets to potentially read all the queue-
bound values (i.e., for packets scheduled in the highest-priority queue).
In the same direction, while most packets only need to update the two
counters corresponding to their queue, the kth packet in each sequence needs
to access all counters to perform the adaptation decision. This supposes
being able to read n + (4 · n) different registers for a single packet (without
even considering the updates). Since existing devices only support up to

22 sp-pifo : programmable scheduling on existing devices

12-16 stages, with a single register access per stage [25], the implementation
of the greedy algorithm is not feasible for a practical number of queues.

2.4.3 Convergence analysis

We now show how the greedy-algorithm performance varies when modify-
ing the three main degrees of freedom: (i) the adaptation window (i.e., the
number of packets that are monitored before the adaptation mechanism is
executed); (ii) the number of queues available in the strict-priority scheme;
and (iii) the number of ranks in the distribution. For that, we analyze the
unpifoness evolution of a single switch running the greedy algorithm for
a uniform rank distribution from 0 to 100 until convergence. We compute
unpifoness as specified in §2.3.1, based on the packets scheduled and the
queue bounds used during the adaptation window.

Effects of varying the adaptation window Fig. 2.6a shows the unpifoness
evolution when we run the greedy algorithm on top of a strict-priority
scheme of 8 queues, and we vary the adaptation window from 50 to 7000

packets. We observe that, for the algorithm to converge, the adaptation
window needs to be broad enough to cover a complete sample of the rank
distribution (i.e., one that characterizes all its representative behaviors). In
our case, any adaptation window below 100 packets can not characterize
completely the rank distribution. Indeed, Fig. 2.6a depicts how the greedy
algorithm correctly converges as soon as more than 200 packets are moni-
tored per iteration. In general, the broader the adaptation window, the more
precise the rank distribution estimate, and the better the adaptation deci-
sion. However, while a too narrow adaptation window can suppose missing
important information of the rank distribution and breaking convergence
guarantees, a too broad adaptation window can make the algorithm too
slow to converge, negatively impacting the performance.

Finally, the greedy algorithm only converges if the rank distribution has
a smaller variability than the adaptation rate (i.e., the rank distribution is
stable during the time it takes for the algorithm to converge). Relating it
to the previous point, simpler rank distributions, which require narrower
adaptation windows, can afford higher levels of variability. In contrast,

2.4 gradient-based algorithm 23

complex distributions which take longer to adapt and are required to keep
stable longer for the algorithm to converge.

Effects of varying the number of queues Fig. 2.6b depicts the case in which
we fix an adaptation window of 1000 packets, and modify the number of
queues from 8 to 32. All queues have a constant size of 10 packets. We see
how the higher number of queues the lower the unpifoness, and the better
the PIFO approximation. This is expected since each queue can be perceived
as an opportunity to sort packets with different ranks, and therefore to
reduce the number of inversions. Also, we can see how the number of
iterations required by the algorithm to converge does not directly depend
on the number of queues. This results from the fact that each adaptation
decision analyzes (and, if required, updates) potential redesigns for all the
different queue bounds.

Effects of varying the number of ranks Fig. 2.6c presents the effects of
modifying the range of the uniform rank distribution from 100 to 1000

ranks, when we fix the number of queues to 8 and the adaptation window
to 1000 packets. As expected, under the same number of queues, a higher
number of ranks implies an increase in unpifoness. Also, as the rank ranges
get closer to the adaptation window, the distribution estimates get worse,
and the adaptation gets tougher.

2.4.4 Limitations

While the adaptation algorithm described above provably converges to the
optimal mapping (see §2.4), two key limitations make it impractical. First, it
is not currently implementable in existing programmable data planes due to
resource constraints. Second, the algorithm only converges for stable rank
distributions, which is rarely the case, and its convergence time directly
depends on the distribution size, which can be large. We explain how to
overcome these limitations in §2.5.

Hardware restrictions Monitoring the rank distributions over periodic
adaptation windows requires a high amount of memory and computational
resources, both of which are scarce in current programmable data planes.
In particular, implementing the greedy algorithm in hardware (see §2.4.1)
requires to: (i) store the value of each queue bound; (ii) compute the current
unpifoness; and (iii) estimate the unpifoness obtained by incrementing or

24 sp-pifo : programmable scheduling on existing devices

decrementing each queue bound. As we explain in §2.4.2, the amount of
resources required to run the algorithm on a practical number of queues (8
queues or more) exceeds the capabilities of current switch designs.

Convergence In §2.4.3, we study the performance of the gradient-based
algorithm and analyze the effects on convergence when the adaptation
window, the number of queues, and the rank range is modified. We show
that, for the algorithm to converge, the rank distribution needs to be stable
in time. However, this is unrealistic in most practical scenarios where not
only the rank distribution is unknown but also varies through time (e.g.,
virtual times in fair-queuing schemes).

2.5 our approach : sp-pifo

We now present SP-PIFO, an approximation of the gradient-based adap-
tation algorithm (§2.3.2) which is implementable in existing data planes
and rapidly adapts to varying rank distributions. SP-PIFO substitutes the
gradient computation by a simpler adaptation process which minimizes the
probability of inversions per packet, rather than per k-packets.

In the following, we first show how to instantiate the empirical risk
minimization problem (eq. 2.2) at the packet level and describe how SP-
PIFO solves it (§2.5.1). We then systematically characterize how SP-PIFO
handles inversions (§2.5.3).

2.5.1 Per-packet adaptation algorithm

The SP-PIFO adaptation algorithm (alg. 2) is based on two competing stages
that act in opposing direction. We show that this combination manages
to strike a balance in the number of inversions observed by all queues,
resulting in a good PIFO approximation. In the following, we first show
how to phrase the empirical risk minimization problem at the per-packet
level before describing both mechanisms.

Problem statement In contrast to §2.3.2, we aim at minimizing the cost
generated by scheduling each individual packet. Formally, we aim to find

2.5 our approach : sp-pifo 25

the optimal bound vector q∗ that minimizes the unpifoness for all enqueued
packets P :

q∗ = arg min
q∈Q

U (P , q) (2.14)

Let r(p) be the rank of a given packet p ∈ P , and let rp(p, q) be the
rank perceived as a result of the mapping decision, which is identified as the
highest rank amongst those of packets sharing the same queue. Considering
that the objective for the bound vector q is to perfectly approximate PIFO
behaviors, we can estimate the unpifoness at enqueue as:

U (P , q) = ∑
p∈P

costq(p) (2.15)

where
costq(p) = rp(p, q)− r(p) (2.16)

Computing the rank perceived requires determining the highest rank
among all packets sharing the queue at any given moment. This not only
requires to keep track of all ranks in each queue, but also selecting the
highest, which is computationally expensive. Since one of the premises of
SP-PIFO is to be implementable in the data plane, we relax this condition
and keep track of only a single parameter qi per queue. These parameters, q,
which we refer to as queue bound, simplifies the cost estimation of a potential
mapping decision at enqueue. We discuss how we update these parameters
as well as the tradeoffs of this relaxation below.

Stage 1: “Push-up” The first stage increases q to minimize the unpifoness
of the queue to which the incoming packet is mapped. Specifically, the
mapping process scans the queues bottom-up and enqueues the packet in
the first queue that satisfies r(p) ≥ qi. It then increases qi to the rank of the
enqueued packet. By doing so, the mechanism minimizes (i) the cost for
each packet p (at enqueue time); as well as (ii) the impact that this decision
may have on future packets.

This mapping process guarantees a zero-cost packet allocation for all
packets within a queue. That is, as we effectively keep track of the highest
rank per queue, we ensure that no packet with lower rank is mapped to the
same queue. This holds for all queues except for the highest-priority queue.
There, packets are enqueued even if r(p) < q1.

Stage 2: “Push-down” As illustrated in §2.2, the first stage can lead to
inversions in the highest-priority queue. The second stage aims at coun-
teracting that effect by reducing the number of ranks enqueued in the

26 sp-pifo : programmable scheduling on existing devices

Algorithm 2 SP-PIFO adaptation algorithm
Require: An incoming packet with rank r.

1: procedure Push-up

2: for qi : q1 to qn, qi ∈ q do ▷ Scan bottom-up
3: if r ≥ qi or i = 1 then
4: qi ← r ▷ Update queue bound
5: Enqueue(r, i) ▷ Select queue
6: end if
7: end for
8: end procedure
9: procedure Push-down

10: if r < q1 then ▷ Detect inversion
11: cost← qi − r ▷ Compute cost inversion
12: for qj ∈ q, j ̸= i do
13: qj ← qj − cost ▷ Adapt queue bounds
14: end for
15: end if
16: end procedure

highest-priority queue. This is achieved by decreasing all queue bounds
by some given amount. The exact decrease applied to each qi introduces a
tradeoff between the packets that can be mapped (∃i s.t. r ≥ qi) and packets
that cause inversions in the highest-priority queue (r < q1). Different de-
creasing strategies exist. In SP-PIFO, we decrease each qi proportionally to
the cost of the inversion. That is, we decrease all queue bounds by q1− r(p).
This choice is both (i) practical, as it can be efficiently implemented in
hardware; and (ii) functional, as it results in a reasonable balance between
inversions in the highest-priority queue and shifts in the other queues.
Below, we provide some insights on the nature of this balance and why it is
important for a good PIFO approximation. We simulate the performance of
different decreasing strategies in §2.5.3.

Tradeoffs Unlike the gradient-based algorithm (§2.3.2), SP-PIFO may con-
verge to a sub-optimal solution exhibiting inversions. One can distinguish
three sources of inversions. First, there can be inversions in the highest-
priority queue. These inversions are proportional to the probability of
observing packets with rank r(p) < q1. Second, after the “push-down”
stage, the queue bounds do not necessarily match the highest rank packet

2.5 our approach : sp-pifo 27

in the queue anymore. This may lead to inversions for future packets and
is proportional to how often, and how much, queue bounds are decreased.
Finally, because only the highest rank in a queue is tracked, it can happen
that a packet is enqueued in a higher-priority queue because r(p) < qi,
while r(p) is greater than the lowest rank in queue i, causing an inversion.
This is proportional to the number of ranks between the minimum rank in
the queue and the queue bound.

Average-case analysis The exact amount of inversions introduced by each
of these three sources is hard to quantify as queue bounds are shifting with
(almost) every packet. Yet, on average, we can show that the dynamics of
SP-PIFO counteract all three sources. On the one hand, it equalizes the
probability of r(p) < q1 with the probability of packets being mapped
to a specific queue, striking a balance between inversions because there
are no higher-priority queues, and inversions because of queue bound
mismatch. Furthermore, for this equalizing, the probabilities of specific
ranks are weighted more if they are far away from queue bounds, which
keeps queues more compact to reduce the chance of overlap.

As a result, on average workloads, SP-PIFO provides a good approxima-
tion, and can adapt to arbitrary rank distributions. Nevertheless, there are
adversarial packet orderings circumventing these mechanisms, resulting in
large unpifoness (§2.8).

2.5.2 Theoretical analysis of SP-PIFO

We now provide the theoretical foundations behind SP-PIFO. SP-PIFO is
a highly-dynamic probabilistic system. In particular, its queue bounds q
change with nearly every incoming packet. Nevertheless, in this section
we show that the system has an attractive equilibrium q∗ (2.5.2), how
this equilibrium balances the different causes of inversions (2.5.2), and we
discuss the limitations and open question of our analysis (2.5.2).

28 sp-pifo : programmable scheduling on existing devices

Stable equilibrium

Queue-bound dynamics Consider SP-PIFO as a discrete-time system, where
each time step corresponds to an arriving packet. Let qt be the queue bounds
at step t, when the t-th packet arrives. Then, the bounds at step t + 1 are:

qt+1 = qt + ∆(rt) (2.17)

where rt is the rank of the t-th packet, and ∆(rt) is the change this packet
causes on the queue bounds. The queue-bound change is given by the “push-
down” and “push-up” stages of SP-PIFO, respectively. If the packet causes
an inversion in the highest-priority queue, all queue bounds are decreased
by qt

1 − rt. Otherwise, there is exactly one queue i such that qt
i ≤ rt < qt

i+1,
and only qi is set to rt, or equivalently, is increased by rt − qt

i . Finally, let
p(rt) be the probability of rank r for the t-th packet. Then, the expected
value of the queue bounds at step t + 1, and the expected difference to the
queue bounds at step t are, respectively: 1

E
[
qt+1

i

]
= E

[
qt

i
]

(2.18)

+ ∑
qt

i≤rt<qt
i+1

p(rt)(rt − qt
i)︸ ︷︷ ︸

∆+
i (qt ,rt)

(2.19)

− ∑
rt<qt

1

p(rt)(qt
1 − rt)

︸ ︷︷ ︸
∆−(qt ,rt)

(2.20)

⇔ E
[
qt+1

i − qt
i

]
= ∆+

i (q
t, rt)− ∆−(qt, rt) (2.21)

Equilibrium As expected, we can see from eq. 2.21 that the change of
queue bounds is determined by the “push-up” (∆+

i) and “push-down” (∆−)
stages working against each other. Indeed, if ∆+

i is larger than ∆−, the
queue bound increases, and vice versa. The system has an equilibrium q∗,
where ∆+

i = ∆− and the expected change is 0. Note that this equilibrium
depends on the rank probability.

Attraction The equilibrium q∗ is attractive, i.e. if qt
i < q∗i , E[qt+1

i − qt
i] > 0,

and vice versa. For small perturbations, this is straightforward. Assume that

1 For queue i = n, there is no qt
i+1 and there is no upper bound on rt.

2.5 our approach : sp-pifo 29

all queue bounds are in equilibrium, except qi. If qt
i < q∗i , then ∆+

i (q
t, rt) >

∆+
i (q

∗, rt), because the sum in eq. 2.19 has (i) more (non-negative) terms;
and (ii) each term is weighted stronger, as the difference rt − qt

i is larger.
On the other hand, ∆−(qt, rt) is either equal to ∆−(q∗, rt) (for i > 1) or
even smaller (for i = 1, as there are less, and lesser weighted, terms in the
sum 2.20). Thus, the increase is larger than the decrease, and the expected
change to qi is positive. The argument for qt

i > q∗i is symmetrical.

For larger disturbances, the equilibrium is also attractive, but it might
take more than a single time step, as the “push-up” stage for qi also depends
on qi+1: if both qi < q∗i and qi+1 < q∗i+1, the “push-up” might be too weak
to pull qi towards the equilibrium. However, this is not the case for the
lowest-priority queue qn, for which the “push-up” does not depend on
another queue. Thus, lower-priority queues (at least qn) might be pulled
towards the equilibrium at first, while other qi are not. Notice that an
expected increase of qt

i+1 increases the “push-up” mechanism for qt+1
i and

decreases it for qt+1
i+1 (eq. 2.19). Eventually, as the lower-priority queue bound

is getting closer to the equilibrium, the higher-priority queue bound is also
pulled towards the equilibrium. This continues until the highest-priority
queue, where an expected increase of qt

1 also increases the “push-down”
mechanism for all bounds at step t + 1 (eq. 2.20). As a result, over multiple
time steps, the expected effects of the “push-up” and “push-down” stages
equalize, eventually pulling all qi towards q∗i .

Balance

As explained in §2.5, there are three main reasons for unpifoness: (i) in-
versions in the highest-priority queue, after which all queue bounds are
decreased; (ii) inversions in a lower-priority queue after its queue bound
has been decreased; (iii) inversions in a lower-priority queue, if its highest
rank “overtakes” the lowest rank of a higher-priority queue.

As we can see in eq. 2.19, eq. 2.20, and eq. 2.21, all these factors play
a role in the dynamics of SP-PIFO. At the equilibrium, the probability of
“push-down”, which is exactly the probability of an inversion in the highest-
priority queue (weighted by its severity), is equalized with the probability
of a packet being mapped to any other queue (again weighted, more on
this below). While this does not directly correspond to inversions, the more
packets are mapped to lower-priority queues, the higher is the probability
of an inversion in those queues after a “push-down”. SP-PIFO thus keeps a

30 sp-pifo : programmable scheduling on existing devices

balance between inversions (i) and (ii), as decreasing (i) would require a
stronger “push-down”, which would then increase (ii), and vice versa.

Finally, as mentioned above, the ranks in a queue are weighted by how far
they are away from the queue bound (rt − qt

i). This penalizes long (in terms
of distinct ranks) queues, which helps to reduce (iii), as the probability
for one queue “overtaking” another increases the further the actual queue
bound is from the highest-rank packet in the queue, which increases with
the length of the queue.

Assumptions and limitations

The analysis presented above is based on a few assumptions, which we
argue are justified, yet pose some open questions.

First, we assume that there exists a finite distribution of ranks. This is
given in practice. Since ranks need to be processed and stored in hardware,
which offers restricted resources, rank ranges must have a limited size.

Second, although SP-PIFO can rapidly adapt to varying rank distribu-
tions (in particular faster than the greedy algorithm), we assume that the
rank distribution is stable enough such that an equilibrium can exist at all.
However, it remains an open question whether there is a point in which
the rank-distribution variation might be too fast for the system to actually
converge to an equilibrium. In that (hypothetical) case, the analysis pre-
sented herein would not be useful to provide any additional insights on the
performance of SP-PIFO.

Finally, we assume that the ranks appear in random order, independently
from each other. At the first glance, this may seem irrational, as many
scheduling algorithms have some structure in the way how ranks are as-
signed to packets for a given flow. Nevertheless, in practical scenarios, many
flows are scheduled together, and even though the ranks for individual
flows might be structured, the combined ranks of packets across flows
become randomized.

Adversarial workloads Based on the previous assumptions, we have
shown that SP-PIFO is attracted towards an expected equilibrium, in which
the different sources of unpifoness are balanced. However, there are also
some limitations. On the one hand, this equilibrium exists only in expec-
tation, and the queue bounds are also only attracted to it in expectation.
The actual queue bounds depend on the order in which packets arrive,

2.5 our approach : sp-pifo 31

as do inversions. So, even though on average, assuming a random rank
ordering, the system might be balanced, there exist particular adversarial
rank orderings, which “outplay” the two stages to create events of large
unpifoness. An adversary might attempt to abuse this by coordinating a
large number of flows to force an adversarial ordering of packet ranks. As
an example, she might try to increase all queue bounds as much as possible
before triggering a “push-down” reaction (e.g., by generating sequences
of monotonically-increasing packet ranks). With the sudden decrease in
queue-bound values, the high-rank packets mapped in the queues would
generate inversions to the new packets.

Nevertheless, any non-malicious coexisting flow can easily thwart such
strategies, by just randomly breaking the adversarial order. Still, it might be
interesting to classify all adversarial orderings, and subsequently monitor
the network to actively detect such type of attacks.

2.5.3 SP-PIFO analysis

We now dive deeper into understanding SP-PIFO using switch-level sim-
ulations. We compare its behavior to that of an ideal PIFO queue, along
with several well-known scheduling schemes (e.g., FIFO). We first describe
the high-level behavior using a uniform rank distribution (§2.5.3), before
systematically exploring the design space (§2.5.3).

Methodology We implement various scheduling schemes (including SP-
PIFO, FIFO, and our gradient-based algorithm) in Netbench [26, 27], a
packet-level simulator. We analyze the performance of a single switch
scheduling 1500 flows of 1MB (fixed), which start according to a Poisson
distribution. We run the simulation during one second. We limit the trans-
mission through an output link of 10 Gbps which corresponds to an average
port utilization of 75%. We measure the number of inversions generated by
each rank at dequeue. Whenever a packet is polled, we check whether its rank
is higher than any of the ranks remaining at any of the queues. When this
occurs, we count an inversion to the rank generating it (i.e., the one of the
polled packet), making sure that inversions are counted at most once per
polled-packet, regardless of the number of packets affected by it.

We compare four scheduling schemes: (i) SP-PIFO (§2.5); (ii) the gradient-
based algorithm (§2.3, see implementation in 2.4.1); (iii) a strict-priority
scheme fixed to the optimal mapping for a uniform distribution (i.e., bounds

32 sp-pifo : programmable scheduling on existing devices

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Fixed Queue Bounds
Greedy (optimal)

SP-PIFO
FIFO

(a) Uniform 8 queues

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Fixed Queue Bounds
Greedy (optimal)

SP-PIFO
FIFO

(b) Uniform 32 queues

0

5

10

15

20

25

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

SP-PIFO Queue Bound
SP-PIFO Cost
SP-PIFO Rank

SP-PIFO 1

(c) Adaptation strategies

0

10

20

30

40

50

 20 30 40 50 60 70 80 90

N
um

be
r o

f I
nv

er
si

on
s

(·1
05)

Utilization (%)

Greedy (optimal)
SP-PIFO

FIFO

(d) Utilization

Figure 2.7: SP-PIFO performance (uniform rank distribution).

distributed uniformly across ranks, qi = 12i); and (vi) a FIFO queue, as
baseline. All strict-priority schemes (SP schemes) use 8 queues of 10 packets,
while the FIFO queue has a capacity of 80 packets.

Characterizing general SP-PIFO behavior

We start by showcasing how SP-PIFO handles inversions by analyzing its
behavior under a uniform rank distribution. That is, we tag the packets
with a rank drawn from a uniform distribution (between 0 and 100).

Fig. 2.7a illustrates the number of inversions generated by each rank for
the different SP schemes in comparison with FIFO. We see that a FIFO
queue generates a uniform number of inversions across all ranks (since
they all share the same queue). In contrast, SP schemes (all the others in
Fig. 2.7a) generate a progressively-higher number of inversions as rank
values increase. This occurs as higher ranks are mapped to lower-priority
queues, which drain packets less frequently. Since those queues have a
higher occupancy on average, the potential number of inversions increases.
This behavior, however, is not preserved for the lowest-priority queue (the
far-right peak in the graph) as a result of starvation. Despite having the

2.5 our approach : sp-pifo 33

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(a) Exponential

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(b) Inverse exponential

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(c) Poisson

0
10
20
30
40
50
60
70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(·1
03)

Rank Values

Greedy (optimal)
SP-PIFO

FIFO

(d) Convex

Figure 2.8: SP-PIFO performance (alternative distributions).

largest average queue size, this queue drains fewer packets and, as such,
the number of inversions it sees decreases.

For the fixed-queue bounds, we see that a saw-shape delineates the
inversions observed across ranks in different queues, reaching the x axis
for the ranks corresponding to the queue bounds. Indeed, the lowest rank
within each queue never generates inversions since the other ranks sharing
the queue have higher values. The second-lowest rank can only generate
inversions to the lowest, and the progression continues until the highest
rank, which can generate inversions to all the lower ranks in the queue.

When considering the gradient-based greedy algorithm and SP-PIFO, we
see that the saw-shape vanishes. This is because queue bounds are not fixed
anymore and successive packets of a given rank can be mapped to multiple
queues. Since the rank distribution sampled at each adaptation window
varies, the queue-bound design in the gradient-based algorithm oscillates.
In SP-PIFO, as a higher variability is produced, the number of inversions
delineates the envelope of the optimal scheme.

34 sp-pifo : programmable scheduling on existing devices

Characterizing SP-PIFO design space

We now systematically explore the design space of SP-PIFO along four di-
mensions: the number of queues, the adaptation strategy in the push-down
stage (§2.5.1), the utilization levels, and the rank distributions. SP-PIFO
manages to approximate the optimal algorithms in all rank distributions
and utilization levels, with as little as 8 queues. The best performances are
obtained under low utilization and with 32 queues.

Number of queues (Fig. 2.7b) When using only 8 queues, SP-PIFO is
already within ∼20–29% of the gradient-descent algorithm and the optimal
mapping. With 32 queues, it gets even closer, producing only ∼22% more
inversions than the optimal and achieving on-par behavior to the gradient-
descent algorithm. Overall, it improves FIFO performance ∼3.3× (resp.
∼10×) when only 8 (resp. 32) queues are used.

Push-down strategies (Fig. 2.7c) We evaluate four adaptation strategies
for decreasing each queue bound in the push-down stage: (i) to the value
of the next-higher queue bound (“Queue Bound”); (ii) by the cost of the
inversion (q1 − r(p), the strategy in SP-PIFO, “Cost”); (iii) by the rank of
the packet causing the inversion (“Rank”); and (iv) by 1 (“1”).

The best performance is obtained for “Queue Bound”, which produces
∼15% more inversions than the gradient-based algorithm. This is followed
by “Cost” and “Rank”, with ∼22%, and “1” with ∼33%. While the three
first techniques produce similar results, the “push down” effect of “1” is
too small to balance the “push up” stage, resulting in many inversions.
While “Queue Bound” is marginally better than “Cost”, it is more costly to
implement, thus SP-PIFO uses the latter.

Utilization (Fig. 2.7d) SP-PIFO performance is close to the gradient-based
algorithm. For utilizations below 60%, SP-PIFO is on-par with the gradient-
based algorithm. The number of inversions slightly increases at higher
utilizations: 26% and 38% for 80% and 90%.

Rank distributions (Fig. 2.8) We analyze the performance of SP-PIFO
under four alternative rank distributions: exponential, inverse exponential,
Poisson and convex. SP-PIFO performs better than FIFO and is close to the
gradient-based algorithm for each distribution.

The performance of SP-PIFO is better for rank distributions in which
more ranks appear in higher-priority queues. The number of inversions for

2.6 implementation 35

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(b) (0,100KB): 99th perc.

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(c) [1MB,∞): Average

Figure 2.9: pFabric: FCT statistics across flow sizes in data mining workload.

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(b) (0,100KB): 99th perc.

 0

 100

 200

 300

 400

 500

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO
DCTCP

TCP

(c) [1MB,∞): Average

Figure 2.10: pFabric: FCT statistics across flow sizes in web search workload.

SP-PIFO in convex and exponential distributions is only ∼21–24% higher
than the gradient-based algorithm. The corresponding numbers for Poisson
and inverse exponential amount to ∼49–55%. In all cases, SP-PIFO performs
between ∼2.5–3.5× better than a FIFO, with only 8 priority queues.

2.6 implementation

In this section, we describe our implementation of SP-PIFO in P416 [28] and
P414. Our implementation follows the algorithm described in §2.5 and spans
190 (P416) and 735 (P414) lines of code. It performs three main operations: (i)
computing/extracting the rank from a packet header; (ii) mapping packets
to queues (§2.2); and (iii) updating the queue bounds.

Rank computation We implemented and tested multiple rank computation
functions such as LSTF [17], STFQ [20], and FIFO+ [29] in P416. We note
that the reduced memory usage in SP-PIFO leaves room to compute ranks

36 sp-pifo : programmable scheduling on existing devices

directly on the switch. That said, most ranking algorithms can directly be
computed by the end-hosts [17].

Mapping We store the queue-bound values in individual registers and
access them sequentially using an if-else conditional tree. For each register
access, we leverage the ALU to perform three operations: (i) we read the
queue-bound value and compare it to the packet rank; (ii) we notify the
queue-selection result to the control flow using a single-bit metadata; and
(iii) we update the queue-bound value to the packet rank if the queue is
selected. In the ALU of the last queue, we check whether an inversion has
occurred before transferring the potential inversion cost using metadata.

Adaptation When the mapping process detects an inversion, we need
to update all queue bounds. While accessing multiple registers is not
restricted by the P4 specification [30], current architectures do not support
it, to guarantee line rate. We address this problem by relying on the packet-
resubmission primitive to access the queue bounds a second time and
update them with the measured inversion cost. While resubmission can
possibly break the line-rate guarantees, we only require it upon inversions.

Memory requirements Our implementation only requires n registers where
n is the number of queues. We leverage n ALUs to access registers during
the mapping process and n− 1 additional ALUs to update registers from the
resubmission pipeline in case of inversions. We use n− 1 bits of metadata
to access the mapping results of non-top-priority queues in their respective
ALUs from the control flow (i.e., a single 1-bit metadata field for each
queue) and an extra 32-bit field for the top-priority queue to (potentially)
transfer the inversion cost.

Regarding the number of stages, our implementation uses more stages
than the number of queues in order to perform the sequential access to
queue-bound registers during the mapping process. Alternative designs
would be possible but would come at the expense of line-rate guarantees.

2.7 evaluation

We now evaluate SP-PIFO performance and practicality. We first use packet-
level simulations to evaluate how SP-PIFO approximates well-known schedul-
ing objectives under realistic traffic workloads (§2.7.1). We then evaluate
SP-PIFO’s performance when deployed on hardware switches (§2.7.2).

2.7 evaluation 37

2.7.1 Performance analysis

We consider two scheduling objectives: (i) minimizing Flow Completion
Times (FCTs); and (ii) enforcing fairness. We consider that ranks are set at
the end hosts for the former objective and computed in the switch for the
latter. For both objectives, we show that SP-PIFO scheduling capabilities
achieve near-optimal performance, with as little as 8 queues.

Methodology We integrated SP-PIFO in Netbench [26, 27], a packet-level
simulator. Similar to [31], we use a leaf-spine topology with 144 servers
connected through 9 leaf and 4 spine switches. We set the access and leaf-
spine links to 1Gbps and 4Gbps, respectively. This results in a theoretical
end-to-end Round-Trip-Time (RTT) of 32.12µs when crossing the spine (4
hops) and 26µs under the leaf (2 hops). We generate traffic flows following
two widely-used heavy-tailed workloads: pFabric web application and
data mining [31]. Flow arrivals are Poisson-distributed and we adapt their
starting rates to achieve different utilization levels. We use ECMP and draw
source-destination pairs uniformly at random.

Minimizing Flow Completion Times

Rank definition & benchmarks We minimize FCTs by implementing the
pFabric algorithm [31] which sets the packet ranks according to their re-
maining flow sizes. Specifically, we compare pFabric performance when
run on top of PIFO and SP-PIFO. We also analyze TCP NewReno with tra-
ditional drop-tail queues and DCTCP with ECN-marking drop-tail queues.
Our pFabric implementation does not consider starvation prevention. As
suggested in [31], we approximate pFabric rate control by using standard
TCP with a retransmission time-out of 3 RTTs, balancing the difference in
RTOs between schemes with the proportional queue size. That is, we use
an RTO of 96µs and 8 queues×10 packets for SP-PIFO (resp. 1 queue×80

packets in PIFO), and an RTO of 300µs and 146KB drop-tail queues for both
TCP and DCTCP, with ECN marking at 14.6KB, i.e. ∼10 packets.

Summary Fig. 2.9 and Fig. 2.10 depict the average and 99th percentile FCTs
of large (≥ 1MB) and small flows (< 100KB) for both data mining and web
search workloads. We see that SP-PIFO achieves close-to-PIFO performance
in both distributions. When comparing performance across flow sizes,
we see that SP-PIFO achieves better performance for small flows. This is

38 sp-pifo : programmable scheduling on existing devices

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(a) (0,100KB): Average on 8

queues

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(b) (0,100KB): Average on
32 queues

101

103

105

107

≥2M 0.2M-1M 80K 50K 30K 20K 10K

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Flow Size

PIFO
AFQ

SP-PIFO
DCTCP

TCP

(c) FCT breakdown 70%:
Average on 32 queues

Figure 2.11: Fairness: FCT statistics for all flows over the web search workload.

not surprising since those flows are mapped into higher-priority queues.
As discussed in §2.5.3, strict-priority schemes provide higher unpifoness
protection for packets mapped into higher-priority queues.

When comparing the two traffic distributions, we see that SP-PIFO per-
forms better under the data mining workload. This is again expected. While
both distributions are heavy-tailed, the data mining one is more skewed [31]
and therefore easier to handle for SP-PIFO. Indeed, the probability of hav-
ing large flows simultaneously sharing the same port (potentially blocking
smaller flows) is lower for the data mining workload.

Data mining (Fig. 2.9) The average FCTs achieved by PIFO and SP-PIFO
are similar for small flows, i.e. within ∼0.4–11%. Concretely, SP-PIFO out-
performs DCTCP and TCP by a factor of ∼2–5× and ∼8–30×, respectively.
When considering the 99th percentile, the gap between PIFO and SP-PIFO
slightly accentuates to ∼9.6–26.6%. Still, SP-PIFO outperforms DCTCP and
TCP by a factor of ∼1.5–4.7× and ∼12.5–22×, respectively. The largest
performance gap between PIFO and SP-PIFO occurs at low utilization. In
this regime, the number of packets scheduled is low and the transient
adaptation of SP-PIFO is more visible. Whenever the utilization is >40%,
the difference is consistently below 20%. Finally, SP-PIFO and PIFO still
perform similarly among large flows: within ∼1.9–9%, with improvements
of ∼1.4–2.7× and ∼1.5–2.8× respect to TCP and DCTCP.

Web search (Fig. 2.10) The results are similar to the data mining one,
with slightly worse performance for SP-PIFO, especially amongst big flows.
Indeed, since the distribution is less skewed, bigger flows have higher
chances to reach higher-priority queues, blocking transmissions of smaller
flows. Still, we see that the performance of SP-PIFO is within ∼16.54–32.5%
of PIFO for small flows, and between ∼1.3–4.4× and ∼4.7–16.7× better

2.7 evaluation 39

than DCTCP and TCP. Even at the 99th percentile, the difference between
SP-PIFO and PIFO stays within ∼20.7–32%. Note that, while the percentages
might seem high, the values we are looking at are very small.

Enforcing fairness across flows

Rank definition & benchmarks We enforce fairness across flows by imple-
menting the Start-Time Fair Queueing (STFQ) rank design [32] on top of
PIFO and SP-PIFO. We benchmark our solution with AFQ [33] (§2.9). We
analyze the performance for different flow sizes and number of queues.
Specifically, we use 8 queues×10 packets in SP-schemes (resp. 1 queue×80

packets for single-queue schemes) and 32 queues×10 packets in SP-schemes
(resp. 1 queue×320 packets for single-queue schemes). For AFQ, we select
the bytes-per-round parameter which gives the best performance. In our
testbed, this is 320 and 80 BpR for the 8-queue and 32-queue scenario,
respectively. As in [33], we use DCTCP as transport layer for AFQ, PIFO
and SP-PIFO (with an RTO of 300µs). We set ECN marking to 48KB, i.e. ∼32

packets. We generate traffic following the pFabric web search distribution.

Summary Fig. 2.11a and Fig. 2.11b depict the average FCTs of small flows
across different levels of utilization, when 8 queues and 32 queues are used.
Fig. 2.11c depicts the FCTs across flow sizes at 70% utilization and for 32

queues. In all cases SP-PIFO achieves near-PIFO behavior and is on-par
performance with AFQ (current state-of-the-art).

Impact of the utilization (Fig. 2.11a & Fig. 2.11b) SP-PIFO stays within
∼23–28% (resp. ∼21–28%) of ideal PIFO across all levels of utilization
when 8 queues (resp. 32) are used. Even in the highest utilizations, it is
consistently below ∼26% (resp. ∼25%). SP-PIFO performance is at the level
of AFQ, within ∼3–10% (resp. ∼0.5–11%), generating improvements of
∼1.4–2.3× and ∼2.7–4.2× (resp. ∼1.4–2.3× and ∼3.7–7.4×) over DCTCP
and TCP. The fact that SP-PIFO performance is equivalent with 8 and 32

queues is not surprising: as the bandwidth-delay product is low, only a
reduced queue size is required for efficient link utilization.

Impact of flow sizes (Fig. 2.11c) At 70% utilization, we see that SP-PIFO
lies within ∼10–30% of PIFO performance for all flow sizes and is on-par
with AFQ. The only exception is for very small flows (<10K) in which AFQ
performs 20% better. SP-PIFO improves DCTCP and TCP behaviors for
small flows, within ∼1.5–3X and ∼2–13X, respectively. Considering the 99th

40 sp-pifo : programmable scheduling on existing devices

percentile, we see that SP-PIFO stays within ∼8–35% of PIFO and improves
between ∼12–78% and ∼1.5–10.76× with respect to DCTCP and TCP.

Impact of the number of queues (Fig. 2.12) We analyze the impact of the
number of queues on average FCTs for both AFQ and SP-PIFO. We set the
BpR at MSS for all queue configurations, as in [33], avoiding AFQ dropping
packets too often for cases of fewer queues. We see that while AFQ has a
higher sensitivity with respect to the number of queues, SP-PIFO achieves a
similar performance, without any configuration or prior traffic knowledge.

2.7.2 Hardware testbed

We finally evaluate our hardware-based implementation of SP-PIFO on the
Intel Tofino Wedge 100BF-32X platform [21]. We perform two experiments.
First, we analyze the bandwidth allocated by SP-PIFO to flows with different
ranks when scheduled over a bottleneck link. Second, we measure the
impact on the FCT when SP-PIFO runs pFabric. We show that SP-PIFO
efficiently schedules traffic at potentially Tbps.

Bandwidth shares We transmit 8 UDP flows of 20Gbps between two
servers. We generate the flows progressively, in increasing order of priority
(decreasing rank). We use 4 priority queues and schedule the flows over a
10Gbps interface. We generate the flows using Moongen [34] and use an
intermediate switch to amplify them to the required throughput.

Fig. 2.13 depicts the flows’ bandwidth and how SP-PIFO manages to
virtually extend the number of queues. As expected, the first 4 flows receive
the complete bandwidth, since they are mapped to dedicated queues. As
the number of flows exceeds the number of queues, flows start to share
queue space and see a reduced bandwidth.

Flow completion times We simultaneously generate 1000 TCP flows of
different sizes, going from 1GB to 100GB in steps of 100MB, and schedule
them over a bottleneck link of 7Gbps. We set the rank of each flow to
the absolute flow size, following [31]. We compare the FCTs achieved by
SP-PIFO scheduling and the ones achieved by a FIFO queue.

Fig. 2.14 shows the resulting FCTs. As expected, the FIFO queue leads
to increased FCTs by not considering flow size. In contrast, SP-PIFO pri-
oritizes short flows over long ones, minimizing their FCTs and the overall
transmission time.

2.8 discussion 41

10

20

30

40

50

0.2 0.4 0.6 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
SP-PIFO Q32
SP-PIFO Q24
SP-PIFO Q16
SP-PIFO Q8

(a) All: Average

10

20

30

40

50

0.2 0.4 0.6 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

PIFO
AFQ Q32
AFQ Q24
AFQ Q16
AFQ Q8

(b) All: Average

Figure 2.12: Fairness: FCT statistics for all flows at different loads, when the
number of queues is modified.

 0
 2
 4
 6
 8

 10

0 50 100 150 200 250 300 350 400 450

Ba
nd

w
id

th
 (G

bp
s)

Time (s)

Flow1
Flow2

Flow3
Flow4

Flow5
Flow6

Flow7
Flow8

Figure 2.13: Tofino: Bandwidth allocation under progressive flow generation
with increasing priorities.

2.8 discussion

We now discuss the limitations of SP-PIFO and how we can mitigate them.
We first discuss intrinsic limitations that come from using PIFO as a schedul-
ing scheme. We then discuss specific limitations of SP-PIFO together with
the problem of adversarial workloads. Finally, we suggest potential hard-
ware primitives that could facilitate PIFO implementations in the future.

PIFO-inherited limitations Individual PIFO queues suffer from two main
limitations. First, they cannot rate-limit their egress throughput preventing
them from implementing non-work-conserving scheduling algorithms. SP-
PIFO also shares the same limitation. Second, PIFO queues cannot directly
implement hierarchical scheduling algorithms. Yet, as proposed by [20],
multiple SP-PIFO schemes (i.e., using different set of priority queues) can
be grouped as a tree to approximate hierarchical scheduling algorithms.
The key challenge consists in figuring out how to allow access of multiple
queues with existing traffic manager capabilities. While this is orthogonal

42 sp-pifo : programmable scheduling on existing devices

 0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(s

)

Flow Identifier

 SP-PIFO
FIFO

Figure 2.14: Tofino: FCT statistics across different flow sizes with pFabric ranks.

to this chapter, one option would be to recirculate packets, enabling access
to the traffic manager (and therefore the queues) multiple times in the
same pipeline. Doing so, while limiting the impact on performance, is an
interesting open question.

SP-PIFO-specific limitations The main limitation of SP-PIFO is that, as
an approximation scheme, it cannot guarantee to perfectly emulate the
behavior of a theoretical PIFO queue for all ranks. We note two things.
First, our evaluation (§2.7) shows that, for realistic workloads, SP-PIFO
performance is often on-par with PIFO performances. Second, we note
that SP-PIFO can provide strong PIFO-like guarantees for some ranks by
dedicating some queues to them at the price of reduced performance for
the other ranks. We believe this is an interesting tradeoff as current switches
can support up to 32 queues per port [33].

Adversarial workloads We have argued that, on average, SP-PIFO can
adapt to any kind of rank distribution. This has certain limitations. First, we
assume that all queues are drained at some point. Nonetheless, a malicious
host could send a large number of high-priority packets and, as a result,
packets in lower-priority queues would never be drained. Such “starvation”
attacks are common to any type of priority scheme. For instance, a malicious
host could try to grab a bigger slice of the network resources by setting
ranks to 0 in slack-based algorithms [17, 29, 31] or resetting flow identifiers
in fair-queuing schemes [20]. The problem of starvation in strict-priority
scheduling is well-known in the context of QoS and is typically addressed
by policing high-priority traffic at the network’s edge [35].

Aside from starvation attacks we also assume that, for a given rank
distribution, the particular order of ranks is random. In practice, this is
reasonable. While the ranks for individual flows might have some structure
(e.g., monotonically-increasing ranks), when various flows are scheduled
together the ordering of their packet ranks is randomized. Yet, attackers

2.9 related work 43

could try to coordinate large numbers of flows to create adversarial order-
ings, which “outplay” the adaptation mechanisms (§2.5.2). Nevertheless,
any non-malicious flow which is active at the same time can thwart such
strategies by randomly breaking the adversarial order. Aside from that, the
network could be monitored to detect such adversarial attacks.

Facilitating PIFO in the future On a forward-looking perspective, we
note some improvements in hardware primitives that would facilitate PIFO
implementations in the future. As we already discussed in §2.6, a higher
number of stages would facilitate per-queue state storage and a higher
number of queues would directly increase PIFO performance. Further than
that, multiple and dynamic memory access between the ingress and egress
pipelines would allow state updates after inversions in the highest-priority
queue without having to rely on resubmission techniques. In the same
direction, access to queue information from the ingress pipeline or an
enhanced flexibility in the management of strict-priority queues directly
from the data plane would enable more accurate unpifoness prediction at
enqueue, opening the doors to higher-performance SP-PIFO algorithms.

2.9 related work

Programmable packet scheduling While scheduling has been extensively
studied over the years, the idea of making it programmable is recent [18].
Sivaraman et. al. introduced it by proving that the best scheduling algorithm
to use depends on the desired performance goal, and proposed the PIFO
abstraction as an enabler [18, 19]. In [17], Mittal et. al. also showed that a
universal packet scheduling outperforming in all scenarios does not exist,
and that least-slack-time first (LSTF) algorithm can be configured to approx-
imate a wide range of objectives. Eiffel [36] presents an alternative queue
structure that approximates fine priorities by exploiting the characteristics
that define packet ranks in most scenarios. In contrast to [18, 36], which
rely on new hardware designs, SP-PIFO shows that efficient programmable
packet scheduling can be achieved today, at scale, and on existing devices.

Exploiting priority queues Other schemes leverage multiple priority queues
for specific performance objectives. They highlight the need for program-
mable scheduling in existing devices [37], and illustrate how rank designs
producing near-optimal results can already be implemented in existing data
planes. For enforcing fairness, FDPA [38] simplifies the computational cost

44 sp-pifo : programmable scheduling on existing devices

of per-flow virtual counters or individual user queues in traditional-fair-
queuing schemes by using arrival-rate information at a user level. AFQ [33],
instead, simulates ideal fair queuing by implementing per-flow counters on
a count-min sketch and dynamically rotating priorities in a strict-priority
scheme to imitate the round-robin behavior. In contrast, SP-PIFO fixes
queue priorities and dynamically adapts the mapping of packets to queues.
This makes SP-PIFO implementable at line rate in existing data planes.

pFabric [31] and PIAS [39] use priority queues to minimize flow comple-
tion times. While pFabric relies, in general, on a PIFO-queue design, [31]
includes experiments in which flows are mapped to priority queues based
on their size. PIAS [39] addresses the case of unknown flow sizes by using
Multi-level Feedback Queues (MLFQ) [40] to achieve the desired Short-
est Job First (SJF) behavior. It gradually switches flows from higher to
lower-priority queues as their transmitted byte count increases.

In contrast to these proposals, SP-PIFO supports a much wider range of
performance objectives. SP-PIFO (like PIFO [18]) can implement any schedul-
ing algorithm in which the relative scheduling order does not change with
future packet arrivals. As illustrated in the evaluation section (§2.7), the
algorithms presented in AFQ [33], FDPA [38], pFabric [31] and PIAS [39]
can be used as ranking designs (i.e., setting packet ranks to scheduling
virtual rounds, estimated arrival rates, shortest remaining processing time
of flows, or number of packets transmitted) to be run on top of SP-PIFO.

2.10 conclusions

In this chapter, we introduced SP-PIFO, a programmable packet scheduler
which closely approximates the scheduling behavior of PIFO queues, to-
day, on programmable data planes. The key insight behind SP-PIFO is to
dynamically adapt the mapping between the packet ranks and a set of
strict-priority queues. Our evaluation on realistic workloads shows that
SP-PIFO is practical: it closely approximates PIFO behaviors and, in some
cases, perfectly matches them. Our evaluation also confirms that SP-PIFO
runs on programmable hardware. Overall, this work shows that the benefits
of programmable packet scheduling—experimenting with new scheduling
algorithms—can be fulfilled today, on existing programmable data planes.

3
PA C K S

3.1 introduction

In the previous chapter, we introduced SP-PIFO, a programmable packet
scheduler designed to run on existing programmable data planes. After
we presented SP-PIFO in 2020, multiple works followed its path, exploring
the possibilities of approximating PIFO behaviors on existing switches [1,
41–44]. We quickly realized that both, SP-PIFO, and its follow-up works,
shared a significant limitation: they were only approximating one of the
two key necessary behaviors of PIFO queues, either their scheduling behavior
or their admission control (Fig. 3.1). In order to approximate PIFO queues
fully, we needed to simultaneously capture both of its behaviors.

PIFO queues sort packets at line rate, thanks to two key functions: (i) they
always admit packets with the lowest ranks; and (ii) they schedule packets
in perfect order of rank. For example, PIFO queues can “push” incoming
low-rank packets before higher-rank packets that are already in the queue,
even dropping the higher-rank packets (if needed) to accommodate the
newly arrived low-rank ones.

SP-PIFO [1], QCluster [43], AFQ [33], PCQ [42], and Gearbox [44], only
approximate PIFO’s scheduling behavior. They map incoming packets to
priority queues to minimize the rank inversions at the output. However,
they do not actively control packet drops, which they leave as a byproduct
effect of the schedulers’ design. As such, even though these schedulers can
support a broad variety of scheduling algorithms, their behavior can have a
negative impact for loss-sensitive applications (cf. §3.2).

SP-PIFO

 packetsA

AIFOPACKS

Only order matters Only drops matter

Everything matters

PACKS AIFOSP-PIFO

Scheduling matters Admission matters

Figure 3.1: PACKS navigates the space between SP-PIFO [1] and AIFO [41],
optimizing for both rank ordering and drops.

45

46 packs : admission-aware programmable scheduling

AIFO [41] only approximates PIFO’s admission behavior: it executes a
rank-aware admission-control policy on top of a FIFO queue that drops
incoming packets imitating a PIFO queue. But because it runs on a single
FIFO queue, AIFO cannot prioritize packets based on their ranks, which
limits the scheduling algorithms that it can accurately approximate.

Our work In this chapter, we introduce PACKS, a programmable PACKet
Scheduler that approximates both the admission and scheduling behaviors
of a PIFO queue on programmable hardware. PACKS runs on top of a set
of strict-priority queues and combines an admission-control mechanism
with a queue-mapping mechanism. Since priority queues cannot drop nor
modify the order of enqueued packets, PACKS emulates the behaviors that
a PIFO queue follows and executes them at enqueue.

Key insights PACKS derives its admission and queuing decisions from two
key sources: the rank distribution of the last packets received (monitored via
a sliding window) and the real-time buffer occupancy of each queue. PACKS
integrates this data into a quantile-based admission and queue-mapping
process that prioritizes packets with lowest expected ranks.

PACKS’s rank-aware approach allows it to minimize rank inversions and
outperforms existing queue-mappers that assume no prior rank knowledge
and rely on per-packet heuristics. PACKS’s queue-occupancy-aware approach
ensures efficient resource utilization and reduces packet drops.

Evaluation We implement PACKS in P4 and evaluate it on real workloads
and in hardware. Our results under mixed flow scenarios show that, PACKS
consistently outperforms in approximating PIFO’s admission behavior and
reduces the rank inversions by up to 7× and 15× with respect to SP-PIFO,
and AIFO, and the number of packet drops with respect to SP-PIFO by up
to 60%. Under pFabric ranks, PACKS reduces the average FCT across small
flows by up to 33% and 2.6× with respect to SP-PIFO and AIFO.

Contributions The main contributions of this chapter are:

• PACKS, a programmable scheduler that emulates PIFO queues on top
of a set of strict-priority queues (§3.3).

• An admission-control algorithm and a queue-mapping technique that
approximate all PIFO behaviors (§3.4).

• A theoretical analysis of PACKS’s optimality (§3.5).

3.2 background 47

• A performance analysis of PACKS on MetaOpt [45] to study its per-
formance gaps and adversarial inputs (§3.6).

• An implementation of PACKS in Java and P4 (§3.7).

• An evaluation showing PACKS’s effectiveness in approximating PIFO
using simulations and hardware (§3.8).

3.2 background

We first revisit the core insights of SP-PIFO [1] (§3.2.1) and introduce
AIFO [41] (§3.2.2). These two programmable packet schedulers serve as
examples of how prior research approximate PIFO’s scheduling and ad-
mission control behavior, respectively (Fig. 3.1). We then motivate PACKS
based on where these schedulers fall short (§3.2.3).

3.2.1 SP-PIFO

As introduced in Chapter 2, SP-PIFO [1] approximates PIFO’s scheduling
behavior (i.e., forwarding the earliest-arrived lowest-rank packet first) on a
set of strict-priority queues. It adapts the mapping between packet ranks
and priority queues dynamically to minimize the number of rank inversions
(i.e., the times a higher-rank packet is scheduled before a lower-rank one).

Mapping SP-PIFO maps incoming packets to queues based on the queue
bounds, which define the lowest rank that the scheduler can admit into each
queue. Whenever SP-PIFO receives a packet, it scans the queue bounds
from lowest to highest priority, and maps the packet to the first queue with
a bound lower or equal to the packet rank.

Adaptation SP-PIFO uses two mechanisms to adapt queue bounds dynam-
ically: a push-up stage where it pushes future low-rank (i.e., high-priority)
packets to higher-priority queues; and a push-down stage where it pushes
future high-rank (i.e., low-priority) packets to lower-priority queues. The
push-up stage occurs whenever a packet is admitted into a queue. Then,
SP-PIFO updates the queue’s bound to the rank of the new packet. In the
push-down stage, SP-PIFO decreases the queue bounds of all queues when
it detects a rank inversion in the highest priority queue. With these two
mechanisms, SP-PIFO spreads packet ranks across queues, reduces rank
inversions, and approximates PIFO’s scheduling behavior.

48 packs : admission-aware programmable scheduling

PIFO

2 2 1 12 1 2 5 4 1 1122

SP-PIFO

1 1

5 4

2 1 2 5 4 1 1145

1

2

AIFO

2 1 2 12 1 2 5 4 1 1212r < 3

Figure 3.2: SP-PIFO and AIFO cannot fully approximate PIFO.

3.2.2 AIFO

AIFO [41] approximates PIFO’s admission behavior (i.e., only admitting the
earliest-arrived lowest-rank packets) on a FIFO queue. It maintains a sliding
window of the most recent ranks and it decides whether to admit each
incoming packet based on the packet’s rank and the buffer-occupancy level.

Admission AIFO uses the distance of the packet rank to the rank of
the packets already in the queue and the time-discrepancy between the
incoming and outgoing rate of the FIFO queue to admit packets. It increases
the probability of dropping a packet as the distance between it’s rank
and that of the recently-admitted packets increases; and it increases the
probability of dropping packets as the space available in the FIFO queue
decreases (the reduction of space in the queue indicates the incoming rate
is higher than the outgoing rate).

3.2.3 Limitations

We analyze the limitations of existing schedulers and motivate the need for
PACKS with an example and a simple experiment.

Example Fig. 3.2 shows how PIFO, SP-PIFO and AIFO serve the packet se-
quence 145212 (first packet on the right). All schedulers have capacity
for 4 packets. SP-PIFO has two priority queues of two packets each, and
fixed bounds with values of 1 and 2 for the highest- (resp. lowest-) priority
queue. AIFO has a fixed admission control that admits ranks r < 3.

3.2 background 49

0

25k

50k

75k

100k

125k

150k

0 25 50 75 100

FIFO
AIFO

SP-PIFO
PACKS
PIFO

N
u
m
b
e
r
o
f
In
v
e
rs
io
n
s

Rank Values

(a) Scheduling inversions

0

20k

40k

60k

80k

0 25 50 75 100

FIFO
AIFO

SP-PIFO
PACKS
PIFO

N
u
m
b
e
r
o
f
D
ro
p
s

Rank Values

(b) Packet drops

Figure 3.3: Scheduling performance, uniform rank distribution.

PIFO “pushes” the first four packets into the queue according to their
rank order: 1245 . When the fifth packet arrives (1), PIFO “pushes” it
into the queue between packets with ranks 1 and 2 and drops the highest-
rank packet in the queue (5). When the last packet arrives (2), PIFO
“pushes” it between packets of rank 2 and 4 and drops packet 4 . PIFO’s
outgoing sequence is therefore 1122 .

SP-PIFO maps packets 11 to the highest-priority queue, and packets
4522 to the lowest-priority queue (c.f., §3.2.1). Since the lowest-priority

queue only has room for two packets, it drops the last packets to arrive (22).
The output sequence is 1145 , which has sorted ranks (it approximates
PIFO’s scheduling), but does not contain the packets with rank 2 that PIFO
accepted (it fails to approximate PIFO’s admission).

AIFO admits the packets with rank r < 3, same as PIFO. However, since
it runs on top of a FIFO queue, it cannot prioritize packets, which results in
an output sequence not sorted by rank (i.e., 1212 instead of 1122).

PACKS predicts the arrival of packets with rank 2 , discards those with
ranks 4 and 5 , and sorts admitted packets across priority queues — it
achieves the optimal output (cf. Fig. 3.5).

Experiment These limitations generalize across ranks. We implement SP-
PIFO, AIFO, PACKS and FIFO in Netbench [26, 27], and schedule a stream
of packets over a bottleneck link where the ranks are distributed uniformly
across [0, 100] (details in §3.8). We measure the priority inversions generated
by each rank and the number of packet drops per rank.

PIFO never causes inversions and schedules packets in perfect order
(Fig. 3.3a). SP-PIFO approximates this behavior, especially for lower-rank
packets: it maps packets with lower ranks to higher-priority queues. AIFO

50 packs : admission-aware programmable scheduling

Queue 1

Queue 2

Queue n

2 1

4 4 3

5

PACKS
Admission Control

decision
r < rdrop?

PACKS
Queue Mapper

2

4

5

queue bounds
q = {2, 4, · · · , 5}

6341452 123445

Priority
Queuing

Incoming packets Outgoing packets

decision
r ≤ qi ?
is f ree?

[
q1 = 2, q2 = 4, · · · , qn = 5

]
rdrop = 6

Figure 3.4: Overview of PACKS data-plane pipeline.

and FIFO generate a high number of inversions across most ranks because
they run on a single queue and cannot prioritize lower-rank packets.

PIFO only drops packets with the highest ranks and has the best per-
formance (Fig. 3.3b) since it prioritizes low-rank packets. AIFO closely
approximates PIFO’s behavior and pro-actively drops the highest-rank
packets. SP-PIFO leaves drops as a by-product effect of its design (it drops
higher-rank packets more often because they are mapped to lower-priority
queues that drain less frequently) and performs poorly. FIFO drops packets
across all ranks due to its tail-drop policy and has the worst performance.

PACKS’s behavior is closest to PIFO in both scheduling inversions and
packet drops since it combines the best of both worlds: an admission-control
scheme, like AIFO, and a queue-mapping scheme, similar to SP-PIFO.

The inefficiencies of existing works in approximating PIFO behaviors
ultimately lead to performance degradation. Not exempting low-priority
packets from occupying buffer space when high-priority ones are present, or
not sorting packets by rank, results in increased latency, reduced bandwidth
for priority applications, and longer flow completion times (§3.8.2).

3.3 overview

We now provide an overview of how PACKS approximates the behavior
of a PIFO queue on existing hardware. PACKS runs on top of a set of
strict-priority queues, and incorporates: (i) an admission-control mechanism

3.3 overview 51

that decides which packets to admit, and (ii) a queue mapper that decides
how to map admitted packets to the different priority queues (see Fig. 3.4).

PACKS uses this setup to approximate two PIFO behaviors: it admits
packets with the lowest ranks; and schedules packets in order of their rank.
What enables PIFO to achieve these behaviors is that it can map packets to
any position in the queue, and it can drop packets (based on their ranks)
even after it has admitted them into the queue. But we do not have this
functionality (by default) on existing hardware.

PACKS approximates these behaviors by predicting the distribution of
packets that will arrive in a given scheduling interval. It then uses this
information to compute the admission and scheduling decisions that a
PIFO would follow, and approximates these actions at each packet’s arrival.
With a given rank distribution, PACKS predicts the set of expected lowest-
rank packets that fit into the available buffer space and it proactively
drops all the arriving packets that have a higher rank than this prediction.
PACKS also estimates how should it map admitted packets to each queue to
approximate the correct rank order at the output and executes this mapping.

Rank-distribution estimation PACKS uses a sliding window to (dynam-
ically) monitor the distribution of the ranks of recently arrived packets.
It assumes that the distribution of latest-enqueued packets offers a good
estimate of the one of incoming packets that are expected to arrive.

Admission control PACKS uses the distribution it estimates (see above) to
predict which packets it should admit into the queue. Intuitively, PACKS
should only admit the packets with the lowest ranks that can fit in the
available buffer space (to mimic PIFO). Whenever a packet arrives, PACKS
measures the available buffer space (as a percentage of the total buffer
space) and computes a rank rdrop that represents a threshold such that all
packets with rank r ≥ rdrop should be dropped. This rank is the lowest rank
for which the quantile of the rank distribution exceeds the percentage of
the remaining buffer space. This policy ensures that PACKS only admits
the lowest-rank packets that it expects to arrive and fit in the available buffer
space, which emulates PIFO’s admission behavior.

Queue mapping PACKS then uses its estimate of the rank distribution to
find the best mapping of expected packets to priority queues, to maximize
the rank order at the output of the scheduler. Intuitively, the best mapping
assigns packets with lower-ranks to the higher-priority queues (to prioritize
low-rank packets) and minimizes the number of different-rank packets

52 packs : admission-aware programmable scheduling

PACKS

1 1

2 2

Incoming packets

sliding window (|W| = 6)

2 1 2 5 4 1. 1122

1

2
r < 3

r1 r2 r3 r4 r5

0

1/6

2/6

Packet rank distribution

[q1 = 1, q2 = 2]

(set bounds)

[rdrop = 3]

(admission)

Figure 3.5: PACKS closely approximates PIFO’s behavior.

assigned to the same queue (to reduce the probability of higher-rank packets
arriving before lower-rank ones, thereby generating a rank inversion).

PACKS defines a set of rank values q = (q1, ..., qn) that drive how it maps
packets to priority queues (in the same way that rdrop drives admission
control). The queue bound qi for each queue describes the highest rank that
the scheduler can admit to the queue such that these packets (i.e. those with
rank r < qi) are the lowest rank packets that fit in the available queue space.
PACKS scans queue bounds top-down (i.e. from highest- to lowest-priority)
and maps each incoming packet to the first queue where the packet rank
is lower or equal to the queue bound — in this way it maps the low-rank
packets to the high-priority queues: PACKS prioritizes expected packets of
low rank over higher-rank ones (similar to PIFO).

Example Fig. 3.5 shows how PACKS schedules the sequence 145212 .
We assume the sequence repeats, and configure PACKS with two priority
queues of two packets each and a sliding window of size |W| = 6. After
receiving the 6-th packet, PACKS has estimated the rank distribution, where
the probability of receiving a packet of ranks 1 to 5 are p(1) = 2/6, p(2) =
2/6, p(3) = 0, p(4) = 1/6, p(5) = 1/6. Given the available buffer space
(i.e., 4 packets), and based on the monitored rank distribution, PACKS sets
rdrop to 3, since the expected 4 packets with lowest rank are those with rank
1 and 2. Then, PACKS sets qi based on the available buffer space at each
queue (i.e., 2 packets each). As such, it sets q1 = 1 to map the two expected
packets with lowest rank to the highest-priority queue, and q2 = 2, to map
the two expected admitted packets with highest rank to the lowest-priority
queue. As a result, the output sequence of PACKS is 1122 , the exact
same one as in the PIFO queue (see Fig. 3.2).

3.4 packs design 53

Queue 1

Queue 2

Queue n

Admission
Control

6341452 ?

Priority
Queuing

Incoming packets Outgoing packets

Queue
Mapping

Figure 3.6: PACKS’s design space.

3.4 packs design

We now describe the theoretical basis supporting the design of PACKS. First,
we frame the problem and introduce the design space (§3.4.1). Second, we
provide the high-level intuition behind PACKS’s design by studying the
case in which it schedules a batch of packets (§3.4.2). Third, we generalize
the algorithm to the online setup (§3.4.3). Finally, we formalize the PACKS’s
algorithm (§3.4.4), and analyze it both theoretically and with MetaOpt [45],
an heuristic analyzer (§3.4.5).

3.4.1 Design space

Let us consider the scheduling design space in Fig. 3.6, which represents
the available resources in existing data planes [21, 46]. Packets arriving at
the scheduler are already tagged with ranks, either specified by the end
hosts or at prior stages of the switch. The scheduler is composed by a
set of strict-priority queues of fixed sizes, an admission-control mechanism
that decides which packets to admit, and a queue mapper that decides
how to map admitted packets to the priority queues. 1 After a packet is
mapped to a queue, it is enqueued only if the queue has sufficient buffer
space; otherwise, the packet is dropped. The scheduler continuously drains
queues in decreasing order of priority, scheduling packets from low-priority
queues only when higher-priority queues are empty, and schedules packets
within each priority queue in a first-in first-out fashion.

1 Some devices allow extra functionalities such as flexible priority-queue configuration, round-
robin scheduling, or buffer management. We use Fig. 3.6’s abstraction for generality and to
guarantee line-rate processing for all packets.

54 packs : admission-aware programmable scheduling

Problem How can we best approximate the behavior of a PIFO queue on top of
the PACKS abstraction in Fig. 3.6?

The PACKS abstraction only allows for two design decisions: an admission-
control and a queue-mapping algorithm. Our objective is to design such two
mechanisms in a way that their overall behavior approximates the one of a
PIFO queue. This is, an admission-control mechanism that (ideally) admits
the earliest-arrived lowest-rank packets, and a queue-mapping algorithm
that (ideally) prioritizes packets with lower rank.

3.4.2 High-level intuition

We introduce the high-level intuition behind PACKS’s design by analyzing
the case in which a PIFO queue schedules a batch of A packets. We assume,
for now, that all packets have the same size, and that the PIFO queue has a
capacity of B packets. For each incoming packet, the PIFO queue decides
whether to admit or drop the packet. Only after processing all the packets,
the PIFO queue schedules the admitted packets.

Approximating PIFO’s admission In this setup, the PIFO queue admits
the B (earliest-arrived) lowest-rank packets to the buffer, dropping the
rest. Considering the rank distribution of the packets in the batch, W ,
the admitted packets are the first B packets that we find when reading
the distribution from left to right (see Fig. 3.7). As such, we can define a
rank rdrop, such that all packets with rank equal or higher than rdrop are
dropped by PIFO. Formally, computing rdrop is finding the highest rank
in the distribution, for which the quantile of the distribution is below the
fraction of the available buffer, B/A:

maximize rdrop, where 0 ≤ rdrop ≤ R,

s.t., W .quantile(rdrop − 1) ≤ B/A
(3.1)

Once we know rdrop, approximating PIFO’s admission on top of the
PACKS abstraction is straightforward: we just have to configure PACKS’s
admission-control to drop all incoming packets from the batch with ranks
higher or equal than rdrop.

So far, our model assumes that PIFO treats all packets with the same
rank equally (i.e., either admitting or dropping them). In practice, however,

3.4 packs design 55

Packets

Ranks

Arrived packets (A)

Buffered packets (B) Dropped packets (D)

0 1 2 3 4 5

1

2

3

4

rdrop R

Figure 3.7: Admission control for a rank distribution,W .

since the PIFO queue has limited size, PIFO may only admit the earliest-
arrived subset of them. To support this behavior, we extend the model
by defining a time, tdrop, above which PIFO drops all the packets of the
highest-admitted rank (i.e., rdrop − 1). We can approximate this behavior
on the PACKS abstraction by configuring its admission-control mechanism
to drop packets based on both, rdrop and tdrop. Specifically, PACKS should
drop packets if r ≥ rdrop or if {r = rdrop − 1 and t ≥ tdrop}.

Approximating PIFO’s scheduling Once PIFO has decided whether to
admit or drop each packet, it schedules the B buffered packets in a earliest-
arrived, lowest-rank-first fashion. This requires packet sorting at line rate.
We can approximate this behavior in the PACKS abstraction using priority
queues. When the number of queues is greater or equal than the number of
ranks, we can perfectly sort packets by mapping packets of each rank to a
different priority queue. When this is not the case, we can still aim for a
good approximation [1].

For each priority queue, i, we define a rank, qi, such that we only admit
to the queue packets with rank lower or equal than qi (c.f., Fig. 3.8). We call
these ranks queue bounds. Formally, we let q = (q1, . . . , qn) ∈ Zn be the set
of bounds for queues 1 to n. We define a mapping strategy that uses queue
bounds to map packets to their highest-possible priority queue, based on
their rank. For each incoming packet with rank r, we scan queues top-down
(i.e., from highest- to lowest-priority) and map the packet to the first queue,
i, that satisfies r ≤ qi.2 With this definition, we convert the problem of
sorting packets at line rate based on their ranks to the problem of finding
the optimal queue bounds that maximize rank order at the output of the

2 Note that PACKS scans queues top-down, while SP-PIFO does so bottom-up [1].

56 packs : admission-aware programmable scheduling

scheduler. We define a loss function US : Rn×R≥0 → R≥0, which stands for
scheduling unpifoness, such that US (q, r) quantifies the approximation error
of scheduling a packet with rank r based on queue bounds q compared to
an ideal PIFO queue. Intuitively, it estimates the probability that a packet
with rank r is scheduled after a packet with higher rank, r′. In the PIFO
queue, US = 0, since packets are scheduled in perfect order. Thus, in the
PACKS abstraction, a lower US leads to a better approximation.

Our goal is to find the optimal queue bounds, q ∗S , that minimize US . Let
Q be the space of all valid queue-bound vectors andW the distribution of
packet ranks. Then, q ∗S are:

q ∗S = arg min
q∈Q

US (q, r) (3.2)

Given that queue bounds are fixed during the enqueue process, scheduling
errors cannot occur between ranks mapped to different priority queues.
Thus, we can compute the total scheduling unpifoness as the sum of the
individual losses at each priority queue. Letting US (qi) be the loss function
corresponding to the queue with bound qi, this is:

US (q, r) = ∑
1≤i≤n

US (qi) (3.3)

Finally, letting pW (r) and pW (r′) be the probability of ranks r and r′,
respectively, both mapped to the queue i, we can define the scheduling
unpifoness of the queue as:

US (qi) = ∑
qi−1<r≤qi

r<r′≤qi

pW (r) · pW (r′) (3.4)

With this formulation, given that we know the exact rank distribution,
W , we can easily compute the optimal queue bounds, q ∗S . For instance, [47]
proposes an algorithm that does so in polynomial time.

To provide a high-level intuition about the optimal queue bounds, we
derive an upper-bound of US (qi) by setting pW (r′) = 1. In doing so, we
assume the worst case scenario in which, for each rank r, there is always a
higher-rank packet, r′ in the queue that can produce a scheduling error. As
such:

ÛS (qi) = ∑
qi−1<r≤qi

pW (r)

=W .quantile(qi)−W .quantile(qi−1)

(3.5)

3.4 packs design 57

Arrived packets (A)

Queue 1 Queue 2 Queue 3 . . . Queue n Dropped packets (D)

Packets

Ranks0 1 2 3 4 5

1

2

3

4

rdrop R

q1 q2 q3 qn

W .quantile(q1) ≤ B1/A

W .quantile(q2)−W .quantile(q1) ≤ B2/A
. . .

W .quantile(qn)−W .quantile(qn−1) ≤ Bn/A

Figure 3.8: Queue mapping for a rank distribution,W .

We can see how the optimal bounds are those that minimize the quantiles
of the rank distribution for the set of ranks mapped to each priority queue.
In other words, the optimal bounds are those that result in the least amount
of different-rank packets mapped to each queue (i.e., those that minimize
the colored area within each priority queue in Fig. 3.8).

Since we have to map all the admitted ranks, 0 ≤ r < rdrop, to some queue,
removing a rank from a queue implies adding it to the adjacent queue.
Thus, any reduction of unpifoness in a queue, increases the unpifoness of
the adjacent queue. We can only perform such an optimization step as long
as there is a queue that can absorb the cost of taking in more ranks without
becoming a new, greater maximum-cost queue. The optimum is achieved
when the estimated scheduling unpifoness in each queue is balanced out.

PACKS’s collateral drops Unlike in PIFO, the admission-control in the
PACKS abstraction (i.e., drop if r ≥ rdrop) is not its only source of packet
drops. Indeed, an admitted packet can still be dropped by the priority-
queue’s enqueue mechanism if the available buffer space in the selected
queue is not sufficient to accommodate the packet. As such, in order for
the PACKS abstraction to fully approximate PIFO’s admission behavior, it
should not only control which packets are admitted; it should also make
sure that the admitted packets are not dropped at enqueue when they

58 packs : admission-aware programmable scheduling

are mapped to the priority queues. This brings us to the third part of the
PIFO-approximation problem: approximating PIFO’s efficient buffer usage.

We now compute the optimal queue bounds that minimize the drops that
occur when mapping packets to priority queues, q ∗D , and compare them to
the optimal bounds that optimize rank order at the scheduler’s output, q ∗S .

Let Bi define the buffer capacity of the i-th priority queue in the PACKS
abstraction. Let B = (B1, . . . , Bn) ∈ Zn describe the buffer allocation across
queues, where the sum of the buffer space of each queue is the total buffer
space: ∑n

i=1 Bi = B. Let q = (q1, ..., qn) ∈ Zn be the set of queue bounds
defining the mapping strategy, where 0 ≤ q1 ≤ q2 ≤, . . . ,≤ qn = rdrop − 1.
With this strategy, we can compute the number of packets mapped to the
i-th priority queue, mi, as:

m1 = [A · W .quantile(q1)]

m2 = [A · W .quantile(q2)]−m1

mn = [A · W .quantile(qn)]−mn−1

(3.6)

We define a loss function UD : Rn × R≥0 → R≥0, which stands for drop-
ping unpifoness, such that UD(q) measures the number of packets dropped
when mapping packets to queues based on queue bounds q. In the PIFO
queue, UD = 0, since there is no queue mapping, and drops only occur at
admission. In PACKS, a lower UD(q) leads to a better approximation.

Our goal is to find the optimal bounds, q ∗D , that minimize UD(q). Let Q
be the space of valid queue-bound vectors andW the distribution of packet
ranks, then the bounds q ∗D are:

q ∗D = arg min
q∈Q

UD(q) (3.7)

Since bounds are fixed during the enqueue process, and each queue drops
packets independently of the others, we can compute the total unpifoness
as the sum of the individual losses at each queue, UD(qi):

UD(q) = ∑
1≤i≤n

UD(qi) (3.8)

3.4 packs design 59

The loss at queue i, UD(qi), is either the difference between the number
of packets mapped to the queue, mi, and the queue space, Bi, or 0, if the
packets have not filled up the queue space:

UD(qi) =

mi − Bi if mi > Bi

0 otherwise.
(3.9)

As such, the optimal bounds q ∗D are the ones that minimize the difference
between the number of packets mapped to each queue and the buffer size
of the queue. Since all packet drops contribute equally to the loss function,
there may exist multiple queue-bound vectors, q ∗D , that result in an optimal
number of drops. In fact, any set of queue bounds is optimal as long as
the packets mapped to each queue is lower or equal than the buffer space
allocated to that queue (i.e., mi ≤ Bi):

∀i : A · (W .quantile(qi)−W .quantile(qi−1)) ≤ Bi (3.10)

Given that PACKS’s admission control already ensures that the total
number of packets admitted can fit within the total buffer space (i.e.,
A · W .quantile(rdrop − 1) ≤ B), we can guarantee that there exists at least
one set of queue bounds, q ∗D , that leads to zero drops at queue-mapping
time. We can find such optimal bounds by computing the ranks for which
the quantile of the rank distribution stays below the allocated queue sizes.
This is ∀i : maximize qi s.t. the eq. 3.10 is satisfied.

Same as it happened in the admission-control counterpart, there may
be rank distributions for which the number of packets of a certain rank
exceeds the queue capacity (even when that rank is the only one mapped
to the queue). In that case, we need finer granularity than the rank-level
to perform the queue mapping. Same as we did for admission control, we
can overcome this limitation by introducing an enqueue-time value ti, for
each priority queue, i, such that packets are only admitted to the queue if:
r ≤ qi − 1 or if {r = qi and t ≤ ti}. Packets not admitted by queue i are
carried over to the next queue, i + 1, which has to add them to its quantile.

Sorting vs. dropping Having computed the optimal queue bounds that
best approximate PIFO in optimizing rank order at the output, q ∗S , and
in minimizing packet drops at queue-mapping, q ∗D , we can see that they
are not always the same. Indeed, q ∗S minimizes the quantiles of the rank
distribution for the ranks mapped to each priority queue, and q ∗D minimizes

60 packs : admission-aware programmable scheduling

the difference between these quantiles and their respective queue sizes.
Thus, which queue bounds should we use?

In general, we could pick any of the two options based on e.g., which of
the two behaviors we believe is more important. However, since our goal is
to design a programmable scheduler, we select the option that generalizes the
most. We realize that q ∗D are not only the best bounds for minimizing packet
drops at queue-mapping time, but also the optimal bounds for scheduling
in case the rank distribution is not known a priori (see eq.3.5 and eq.3.10).
Indeed, if the rank distribution of incoming packets is not known, the
optimal queue mapping that minimizes rank reordering is the one that
distributes packets across queues proportionally to the queue sizes. Thus,
q ∗D can be seen as a worst-case bound for q ∗S , leading to a good performance
in both dimensions, as we show in §3.8. As a result, we leverage q ∗D , as the
queue bounds for our design.

3.4.3 Online adaptation

So far, we have assumed a simplified scenario where packets arrive to the
scheduler in a batch-basis, all packets have the same size, and we know the
complete rank distribution of the batch at enqueue. In practice, however,
packets arrive in a stream, and the scheduler needs to perform the admission
and enqueue decisions per-packet, at line rate. In the following, we translate
our high-level intuition to an algorithm design that is practical and which
we can deploy to existing hardware.

Sliding window to monitor rank distribution In the online setup we do
not know the rank distribution of incoming packets,W , in advance. Instead,
the best prediction that we can make is based on the rank distribution of
recently-received packets. As such, same as previous approaches [41, 47],
we monitor this distribution, W, using a sliding window, and use it to drive
the admission and queue-mapping decisions.

Queue occupancy to estimate congestion In the online case, packets arrive
in a continuous stream and not in a batch basis. Thus, instead of computing
the quantiles over the number of packets arrived in the batch, A, we do so
over the number of packets sharing the buffer in a scheduling interval, B.
At the same time, while in the batch case we could assume empty queues at
start, in the online case we have to consider dynamic buffers which should
absorb the short-term mismatches between traffic arrival and departure

3.4 packs design 61

rates. We do so by measuring the buffer occupancy of the queues, and
using them as an estimate of their congestion levels. 3 As a result, given b,
the buffer-occupancy level at a certain packet’s enqueue time, we decide
to admit the packet if W.quantile(rdrop − 1) ≤

[
1

1−k ·
B−b

B

]
, where k is an

optional parameter to give room for burstiness. Similarly, given bi, the
buffer-occupancy level of queue i, we perform the queue-mapping process
based on queue bounds, q, satisfying:

q1 := max
r1∈N

s.t. W.quantile(r1) ≤
1

1− k
·
[
(B1 − b1)

B

]
q2 := max

r2∈N
s.t. W.quantile(r2) ≤

≤ 1
1− k

·
[
(B1 − b1)

B
+

(B2 − b2)

B

]
· · ·

qn :=max
rn∈N

s.t. W.quantile(rn)≤
1

1− k

[
∑n

j=1(Bj − bj)

B

]
(3.11)

Since qn = rdrop − 1, the lowest-priority queue’s mapping policy already
implies the admission control at the scheduler, which simplifies the algo-
rithm implementation (cf. alg. 3).

Minimizing collateral drops Same as in the batch case, packets of a certain
rank may exceed a queue’s capacity. In the batch case, we relied on ti to map
packets to a lower-priority queue if the higher-priority queues were full. In
the online case, we assess queue occupancy during mapping; if the selected
queue for a given packet is full, we direct the packet to the next queue with
available space. This approach addresses a key limitation of queue-mappers
like SP-PIFO, which excessively drop incoming packets when mapped to
the same queue (e.g., during bursts of packets with the same rank or with
monotonic rank increase). As such, PACKS prevents drops and ensures
an efficient usage of the buffer resources. Additionally, PACKS’s top-down
scanning process ensures that PACKS preserves the scheduling order of
such packet sequences, despite mapping them to different priority queues.

62 packs : admission-aware programmable scheduling

Algorithm 3 PACKS
Require: An incoming packet pkt with rank r

1: procedure Ingress

2: Update sliding window W with r
3: B← buffer.total Bi ← buffer(qi).total
4: bi ← buffer(qi).used
5: for Queues(i) : i = 1 to n do ▷ Scan top-down

6: if W.quantile(r) ≤ 1
1−k ·

[
∑i

j=1(Bj−bj)

B

]
then

7: if bi < Bi then ▷ Queue i not full
8: Queues(i).enqueue(pkt) ▷ Select queue
9: return;

10: end if
11: end if
12: end for
13: Drop(pkt) ▷ Drop packet
14: end procedure

3.4.4 PACKS algorithm

We detail the PACKS algorithm in alg 3. For each incoming packet, PACKS
decides whether to admit the packet or drop it, and how to map admitted
packets to priority queues.

Admission control Whenever an incoming packet arrives, PACKS performs
two main operations. First, it updates the sliding window, W, with the rank
of the new packet, r. Then, it measures the current buffer occupancy, b
and uses it to compute the portion of the buffer space, B, that is still free:
B−b

B . PACKS admits the incoming packet if the quantile of its rank in the
monitored rank distribution is lower than the fraction of available buffer
space: W.quantile(r) ≤

[
1

1−k ·
B−b

B

]
. Note that we weight the admission

condition by an optional parameter, k, to allow for some burstiness. Also,
note that in alg. 3, the admission condition is implicit in the queue-mapping
process. Indeed, the drop action in line 13, executed when the packet has

3 This is a common approach in queue-management [13, 41, 48]. We could also have used the
sojourn-time of packets, as proposed by CoDel [48].

3.4 packs design 63

not been mapped to the lowest-priority queue, already serves the purpose
of admission control.

Queue mapping For the admitted packets, PACKS scans priority queues top-
down (i.e., from highest- to lowest-priority) and maps the packet to the first
queue with available space that satisfies the condition: W.quantile(r) ≤ 1

1−k ·[
∑n

j=1(Bj−bj)

B

]
. If a packet is not admitted to any of the queues, because its

rank is too high, or because all queues are full, it is dropped.

3.4.5 PACKS analysis

Similarly to other networking algorithms [13, 41, 47–50], PACKS uses a
window-based approach instead of a per-packet heuristic. As a result,
PACKS outperforms under a stable rank distribution, when the window
size is large. While the window-based approach generally makes PACKS
less vulnerable to adversarial packet workloads (PACKS’s bounds are up-
dated more smoothly, making them harder to disrupt, cf. Fig. 3.9), it also
represents PACKS’s Achilles’ heel.

We evaluated PACKS on MetaOpt [45]–a recent heuristic analysis tool–,
to understand its performance gap relative to SP-PIFO, AIFO and PIFO,
and to identify adversarial inputs (cf. §3.6). We found that PACKS is robust
against adversarial sequences that make SP-PIFO drop more than 60% of
high-priority packets, or make AIFO delay highest-priority packets by more
than 60% of the total queue size. We also found that PACKS’s adversarial
inputs consist of bursts of either very high or very low rank packets, which
“pollute” the monitored distribution and prevent the well functioning of the
algorithm (cf. §3.6.3). In §3.8.1 we study the impact of such behaviors in
depth and show how PACKS can react faster to such distribution changes
by using smaller window sizes and higher burstiness allowances. Then,
PACKS relaxes its admission criteria and its behavior converges to the one
of per-packet heuristics such as SP-PIFO (cf. Fig 3.19).

In §3.5, we study PACKS’s optimality theoretically. We prove that, for
certain window and buffer-size conditions, the departure rate for all ranks
in PACKS converges to that of a PIFO queue (cf. Theorem. 3.1). We also
suggest an upper bound for the number of inversions that PACKS produces
for a generic packet sequence, with respect to PIFO (cf. Claim. 1).

64 packs : admission-aware programmable scheduling

3.5 theoretical analysis of packs

Comparison with PIFO In the following, first, we show that, under certain
conditions, the departure rate for all packet ranks in PACKS is the same as
for a PIFO queue. Moreover, under these conditions, there is only a small
difference between the sets of packets forwarded by PIFO and PACKS.

Let the set of packets forwarded (up to time t) by PIFO and PACKS be
PIFO(t) and PACKS(t), respectively. Then, to measure the difference in
drops between PACKS and PIFO, we define:

∆(t) =
|PIFO(t) \ PACKS(t)|+ |PACKS(t) \ PIFO(t)|

|PIFO(t) + PACKS(t)| .

We have ∆(t) ∈ [0, 1], where a small value of ∆(t) indicates a small
difference between PACKS and PIFO. We denote the maximal and minimal
rank probabilities with δ+ := maxi p(i) and δ− := mini p(i).

Theorem 3.1. Assume that the window size |W|, buffer spaces B1, . . . , Bn, and
the number of arrived packets, T, tend to infinity. Furthermore, assume that the
maximal and minimal rank probabilities δ+ and δ− are bounded between two
positive constants. We denote the ratio of the outgoing and incoming packet rate by
v, and suppose v < 1 (otherwise, both PIFO and PACKS behave like a FIFO). We
claim that the difference between the drops of PIFO and PACKS is at most δ+, i.e.,
∆(T)T→∞ ≤ δ+. Moreover, for each packet rank, the admission rate of PACKS is
identical to the one of PIFO.

Proof: Since the window size, |W|, is considered very large, the empirical
rank distribution inW tends to the real packet rank distribution. In other
words, after waiting a long time, we can know the rank probabilities with

high precision, that is |p(i)− pW (i)| |W|→∞−−−−→
T≥|W|

0. Thus, empirical quantiles,

W .quantile(i), tend to the quantiles according to the real distribution, i.e.,
W .quantile(i)→ ∑r

i=1 pi.

Intuitively, since the buffer space B is very large, the relative queue
occupancy b/B changes smoothly over time. More precisely, let b(t) denote
the buffer occupancy after the arrival of the tth packet (or, for short, ‘at time
t’), and let qn(t) = 1

1−k
B−b(t)

B denote the highest queue bound at time t.
At time T, we have queue bound qn(T) as the admission bound. Let rT be
the maximum rank such thatW .quantile(rT) ≤ qn(T). This means that the

3.5 theoretical analysis of packs 65

ratio of the admitted packets is ∑rT
i=0 p(i) Thus, after the arrival of the next

packet, E(b(T + 1)− b(T)) = ∑rT
i=0 p(i)− v (recall that, for every incoming

packet, the number of drained packets is v on average). This means the
following.

1. If ∑rT
i=0 p(i) > v, the queue occupancy likely increases, ultimately

triggering a drop in qn and in the rate of admitted packets.

2. If ∑rT
i=0 p(i) < v, the occupancy likely decreases, triggering a rise in

qn and in the rate of admitted packets.

3. Finally, in the event of ∑rT
i=0 p(i) = v, the queue occupancy makes a

motion very similar to the one-dimensional random walk, eventually,
after a while likely triggering qn to either drop or rise for a short time
period, before bouncing back to rT .

We note that, since the buffer spaces are considered to be very large, and
the minimum rank probability δ− is lower bounded by a positive constant,
these events happen with probability 1 based on the law of large numbers.
Furthermore, in case 3, qn(T + t) = rT for any t ≥ 0 with probability 1.

This also means that, in case 3, ∆(T) T→∞−−−→ 0, since after a while PIFO
and PACKS forward the same packets with probability 1. In cases 1 and 2,
there is a single rank ‘on the border’ that either gets forwarded or dropped
by chance both in PIFO and PACKS; thus, in these cases, ∆(T)T→∞ ≤ δ+.
Note that the overall forwarding rate of this rank (and thus of all ranks) is
the same for both PIFO and PACKS.

An alternative intuitive reasoning supporting the statement that the for-
warding rates coincide for PIFO and PACKS is the following. In both cases,
there are three classes of ranks: (i) small ranks that are always forwarded;
(ii) large ranks that are always rejected; and (iii) a borderline rank r∗ that is
either forwarded or rejected by chance. Since draining is continuous both
for PIFO and PACKS, the leftover bandwidth after the small-ranked packets
is given to the borderline rank, r∗, as it is the only choice. □

Next, we present an asymptotically tight upper bound for the number of
inversions that PACKS produces for a packet sequence compared to PIFO.

Claim 1. On a sequence of S packets, given a buffer size of B, PACKS cannot
cause more than Θ(B · S) inversions with respect to PIFO.

Proof: A bad sequence for PACKS: Take a sufficiently large S, with the packet
ranks in the sequence being S, S− 1, . . . , 1. Then, PACKS will enqueue all the

66 packs : admission-aware programmable scheduling

packets to the highest priority queue Queues(1). In this setting, the behavior
of PACKS basically transforms to being a FIFO using Queues(1). We assume
that after a brief period, when the rate of packet arrivals exceeds the
departure rate, Queues(1) gets full. Oversimplified, e.g., while enqueuing
the first B1 packets, none is dequeued. Then, packets are enqueued and
dequeued in an alternate fashion. In this simplified example, the PIFO
output rank sequence will be (first dequeued on the left): OP = [S− B1, S−
B1 − 1, . . . , 1, S− B1 + 1, S− B1 + 2, . . . , S]. In the meantime, the output of
PACKS is the same sequence as the input was: [S, . . . , 1]. We can observe
that PIFO forwarded a number of S− B1 packets B1 time slots faster than
PACKS. If S≫ B1 and B1 ≥ c · B for some constant c > 0, then the number
of inversions produced by PACKS compared to the PIFO output is Ω(SB).
We can see that the same asymptotic bound hold in the more realistic
scenario when some packets are dequeued in the initial phase when the
queue gets full.

Upper bound if the same packets are admitted as PIFO: obviously, one
packet cannot get ahead more packets than the buffer size B, hence in
the output sequence of PACKS there could be not more than O(BS) more
inversions than in the output of PIFO. □

We note that, after a short initialization period, an ever-decreasing se-
quence of ranks (like in the proof of Claim 1) makes AIFO and SP-PIFO
suffer similarly as PACKS in terms of the number of rank inversions.

Comparison with AIFO The next theorem states that PACKS admits the
same packets as AIFO. This notable since AIFO was designed to mimic the
admission behavior of PIFO.

Theorem 3.2. Given the same window size, buffer size, and burstiness allowance,
PACKS drops the same packets as AIFO.

Proof: Following the notations of the AIFO paper [41], we denote the total
buffer size of AIFO by C, and its queue occupancy by c. AIFO admits a
packet r if W.quantile(r) ≤ 1

1−k ·
C−c

C . Assume indirectly that there exists
an t ∈ N, for which the tth arriving packet is enqueued in exactly one of
PACKS and AIFO. We choose t as the minimum of such values. We denote
the rank of this packet as rt.

3.5 theoretical analysis of packs 67

Case 1: PACKS enqueued rt, while AIFO did not. Here we have the
following inequalities explained below, yielding a contradiction:

W.quantile(rt)
(a)
>

1
1− k

· C− c
C

(b)
=

1
1− k

·
∑n

j=1 Bj − bj

B

(c)
≥

(c)
≥ W.quantile(rt).

Here, we get (a) from the fact that AIFO does not enqueue rx. For (b), we
just match the notations of AIFO and PACKS. Finally, (c) holds because
PACKS enqueues rt. Combined, (a), (b), and (c) clearly yield a contradiction.

Case 2: AIFO enqueued rt, while PACKS did not. Since AIFO enqueued

rt, we have W.quantile(rt) ≤ 1
1−k ·

C−c
C = 1

1−k ·
∑n

j=1 Bj−bj
B . Let i ∈ {1, . . . , n}

be the minimal number such that W.quantile(rt) ≤ 1
1−k ·

∑n
j=i Bj−bj

B . We
know that such an i exists. Since PACKS did not enqueue rt at all, we can
deduce it did not enqueue rt in the ith queue either. This is possible only
if bi = Bi. If i ≥ 2, this contradicts the minimality of i, since this means

W.quantile(rt) ≤ 1
1−k ·

∑n
j=i−1 Bj−bj

B . If i = 1, and n ≥ 2, then PACKS will
enqueue rt to the first queue having free space; note that such a queue
exists, since before the arrival of rt, AIFO had spare buffer space. Finally,
The case of i = 1, and n = 1 also yields contradiction, since then, the AIFO
would not have enqueued rt either. The proof follows. □

Finally, we argue that, for the highest priority packets, PACKS causes no
more rank inversions than AIFO.

Theorem 3.3. For any packet sequence, given the same window size, total buffer
size, and burstiness allowance, PACKS causes no more priority inversions than
AIFO for the highest priority packets.

Proof: The theorem follows from two statements: (a) AIFO and PACKS
admit the same set of packets (under the same configuration, see Theorem.
3.2), and (b) The quantile estimate of the highest priority packet is always
the smallest (equalling 0). Let t denote the index of the packet in the input
sequence. Let IPACKS and IAIFO denote the number of higher-ranked packets
that t follows in the output sequence of PACKS and AIFO, respectively. From
(b), we can show that for a given packet with the highest priority and index
t, there is no packet that arrives after t (having an index greater than t),
and is going to be dequeued before packet t. Rephrased, this means that

68 packs : admission-aware programmable scheduling

0
20
40
60
80

100

 0 200 400 600 800 1000
Q

ue
ue

 L
ev

el
s

Packet Arrival
Queue1
Queue2

Queue3
Queue4

Queue5
Queue6

Queue7
Queue8

(a) PACKS queue bounds

0
20
40
60
80

100

 0 200 400 600 800 1000

Q
ue

ue
 L

ev
el

s

Packet Arrival
Queue1
Queue2

Queue3
Queue4

Queue5
Queue6

Queue7
Queue8

(b) SP-PIFO queue bounds

0

20k

40k

60k

80k

0 10 20 30 40 50 60 70 80 90 100

Fo
rw

ar
de

d
Pa

ck
et

s

Rank Values
Queue1
Queue2

Queue3
Queue4

Queue5
Queue6

Queue7
Queue8

(c) PACKS queue mapping

0

20k

40k

60k

80k

0 10 20 30 40 50 60 70 80 90 100

Fo
rw

ar
de

d
Pa

ck
et

s

Rank Values
Queue1
Queue2

Queue3
Queue4

Queue5
Queue6

Queue7
Queue8

(d) SP-PIFO queue mapping

Figure 3.9: Queue-bounds evolution and rank mapping for PACKS and SP-PIFO
under a uniform distribution (8 queues).

IPACKS ≤ IAIFO. This is true for each packet of highest priority. Thus, PACKS
always has at most the same total number of priority inversions as AIFO
for the highest priority packets. □

3.6 performance analysis using metaopt

MetaOpt [45, 51] is a tool to compare the performance of two competing
heuristics or a heuristic and an optimal solution. It identifies adversarial
workloads that cause the maximum difference between the performance of
the two algorithms specified as input.

We model PACKS in MetaOpt and compare it to AIFO [41], SP-PIFO [1],
and PIFO [20]. Our goal is to understand when and under what inputs PACKS
performs substantially better or worse than them. We focus on two perfor-
mance metrics. The first metric is the number of packets dropped weighted
by the packet’s priority (where the priority is defined as the difference
between the maximum rank in the distribution and the packet rank: max.
rank - packet rank). The second metric is the number of priority inver-
sions weighted by the packet’s priority. These metrics help us identify the

3.6 performance analysis using metaopt 69

45671111222311311

Incoming Packets

PACKS

1111

2223

4567

H

M

L

AIFO

1 1 3 2 2 2 1 1 7 6 5 4

Figure 3.10: Adversarial input that maximizes the gap between weighted priority
inversion of AIFO compared to PACKS. AIFO can delay the highest
priority packet by more than 60% of the queue length.
(Starting window = [1, 1, 1, 1]).

23455767101199888

Incoming Packets

PACKS

9988

5678

2345

H

M

L

AIFO

8 8 8 9 9 7 6 5 5 4 3 2

Figure 3.11: Adversarial input that maximizes the gap between weighted priority
inversion of PACKS compared AIFO.
(Starting window = [1, 1, 1, 1]).

adversarial inputs that cause the heuristics to disrupt the performance of
lower-rank packets (which are most important in the PIFO context).

Experiment setup We let packets take ranks between 1 and 11. We consider
all the 15-packet traces possible with these ranks. We set the buffer size to 12

packets, and assume it empty at start. We configure PACKS and AIFO with
a window size |W| = 4 and a burstiness allowance k = 0. We configure
SP-PIFO and PACKS with 3 priority queues of 4 packets each.

70 packs : admission-aware programmable scheduling

3.6.1 Comparison with AIFO

Packet drops We find that PACKS and AIFO always admit the same set
of packets when they use the same configuration. This is expected, as we
prove in Theorem. 3.2.

Rank inversions Fig. 3.10 and Fig. 3.11 illustrate the adversarial inputs that
MetaOpt discovered for AIFO with respect to PACKS and vice versa. We
find that AIFO can delay the highest priority packets by more than 60% of
the total queue size compared to PACKS. AIFO only has an admission policy
and suffers when the input sequence is not sorted. In Fig. 3.10, we show an
input sequence where AIFO causes 24 priority inversions for lowest-rank
packets, whereas PACKS is able to fully sort the packets.

Adversarial inputs to AIFO consist of lower ranked packets compared to
the adversarial inputs to PACKS. PACKS underperforms when a distribution
shift happens, and packets in the window are not a good estimate of the
newer incoming packets. The worst case of PACKS compared to AIFO is
on a packet sequence that is approximately sorted (Fig. 3.11). Due to the
distribution shift, PACKS ends up mapping higher-priority packets to lower-
priority queues and lower-priority packets to higher-priority queues. In
practice, the impact of scheduling such packet sequence with PACKS would
not be significantly detrimental. Since queues are empty at start, PACKS
would start sending the lower-rank packets while higher-rank ones arrive.

Further, PACKS’s adversarial sequence (Fig. 3.11) consists of packets with
higher ranks than the adversarial input to AIFO (Fig. 3.10), which have
lower importance. This indicates that AIFO can cause higher average delays
for important sensitive packets compared to PACKS. Our results show that
PACKS never causes more priority inversion for the lowest ranked packets
than AIFO (as we prove in Theorem. 3.3).

3.6.2 Comparison with SP-PIFO

Packet drops Fig. 3.12 and Fig. 3.13 show the adversarial inputs that
MetaOpt found for SP-PIFO respect to PACKS and vice versa. We observe
that SP-PIFO can drop more than 60% of high-priority packets while leaving
66% of the total queue size empty. SP-PIFO lacks an admission policy and
underperforms when we have a stream of packets with the highest priority

3.6 performance analysis using metaopt 71

111111111111111111

Incoming Packets

SP-PIFO

1111

H

M

L

PACKS

1111

1111

1111

H

M

L

Figure 3.12: Adversarial input that maximizes the gap between weighted packet
drop of SP-PIFO compared to PACKS.
(Starting window = [1, 1, 1, 1]).

21112345111101233

Incoming Packets

SP-PIFO

1233

1111

2234

H

M

L

PACKS

1111

21

11

H

M

L

Figure 3.13: Adversarial input that maximizes the gap between weighted packet
drop of PACKS compared to SP-PIFO.
(Starting window = [1, 2, 1, 1]).

(all with rank 1). In this case, SP-PIFO maps all the packets to its lowest-
priority queue, dropping many of them while the other queues are empty.
PACKS, however, fills the queues one by one from highest to lowest priority,
efficiently using the buffer resources and preventing packet drops.

PACKS drops at most 3 high-priority packets whereas SP-PIFO can drop
up to 8 high-priority packets (2.33× more). PACKS underperforms when
the input sequence meets two conditions: (i) the rank of most of the packets
increases, and (ii) a few of the packets in the middle of the trace have
a higher rank than the ones received before or after them. Condition (i)
describes an adversarial case for both SP-PIFO and PACKS, but condition
(ii) helps SP-PIFO mitigate this by moving to a higher priority queue. Even
with this, PACKS drops at most 3 high-priority packets more than SP-PIFO
(2.33× less than the packet drop of SP-PIFO on its adversarial input).

72 packs : admission-aware programmable scheduling

111111221093

Incoming Packets

SP-PIFO

93

2210

111111

H

M

L

PACKS

1111

223

11109

H

M

L

Figure 3.14: Adversarial input that maximizes the gap between weighted priority
inversion of SP-PIFO compared to PACKS.
(Starting window = [1, 1, 1, 1]).

1011112221111

Incoming Packets

SP-PIFO

1111

222

101111

H

M

L

PACKS

1011112221111 H

M

L

Figure 3.15: Adversarial input that maximizes the gap between weighted priority
inversion of PACKS compared to SP-PIFO.
(Starting window = [1, 1, 11, 11]).

Rank inversions To capture only the impact of rank inversions, we set
the queue sizes long enough so that packet drops do not occur. Fig. 3.14

and Fig. 3.15 show the adversarial inputs that MetaOpt discovered. We
note that the adversarial input to PACKS is only slightly worse than the
adversarial input to SP-PIFO. The worst-case input for SP-PIFO with respect
to PACKS causes 20 priority inversions for the highest priority packet, while
the worst-case input for PACKS only causes 24 of them.

SP-PIFO performs poorly when the rank of most of the packets is sorted,
but there are a few packets in between with higher ranks than the ones
received before or after them. These higher ranks cause SP-PIFO to push
the rest of packets to higher-priority queues, leading to priority inversions.
This pattern is the same as the one that causes PACKS to drop numerous
packets compared to SP-PIFO.

3.6 performance analysis using metaopt 73

11111112311223344

Incoming Packets

PACKS

1111

111

11

H

M

L

PIFO

111112223334

Figure 3.16: Adversarial input that maximizes the gap between weighted packet
drop of PACKS compared to PIFO. (Starting window = [1, 1, 1, 1]).

111111111111432111121111

Incoming Packets

PACKS

11111111

111143

2211

H

M

L

PIFO

112234111111111111

Figure 3.17: Adversarial input that maximizes the gap between weighted priority
inversion of PACKS compared to PIFO.
(Starting window = [1, 11, 1, 11]).

PACKS underperforms when we can split the packets into multiple
batches that meet two conditions: (i) the packets in each batch are in the
non-decreasing order of their ranks, and (ii) all the packets in a given batch
have higher rank than the packets in a subsequent batch. SP-PIFO would
put each batch in one of its queues, achieving perfect sorting, whereas
PACKS does not perform any sorting across batches of packets.

74 packs : admission-aware programmable scheduling

3.6.3 Comparison with PIFO

Fig. 3.17 and Fig. 3.16 show the adversarial inputs that MetaOpt discovered.
We see that the worst-case input to PACKS (with respect to PIFO) is the
same as the worst-case input to AIFO (with respect to PIFO).

Packet drops The worst-case input is an increasing sequence of packet
ranks. PACKS (similar to AIFO) computes the quantile using a sliding
window. In this sequence, the quantile estimate of every packet is large, so
PACKS (similar to AIFO) will drop the packets. The fact that both worst-case
inputs to PACKS and AIFO, with respect to PIFO are the same, is expected,
since PACKS and AIFO drop the same packets, as proved in Theorem. 3.2.

Rank inversions The worst-case input is a decreasing sequence of packet
ranks. In that case, PACKS does not do any sorting and performs the same
as AIFO (putting every packet in the highest priority queue with available
space). This is also expected (cf. Claim 1 and the insight after its proof).

3.7 implementation

We implemented PACKS in P416 for Intel Tofino 2 [21] using 439 lines of
code. Our implementation uses 12 stages and the resources outlined in
Table 3.2. For each incoming packet, PACKS: (i) monitors the distribution
of recent ranks; (ii) computes the quantile of the packet’s rank on this
distribution; (iii) measures queue occupancies; and (iv) uses this data to
decide the packet’s admission, dropping, and queue mapping.

Rank-distribution monitoring We track the rank distribution of the packets
received by implementing a sliding window over a set of |W| registers. Each
register stores the rank of one packet, and we use a circular packet counter,
from 0 to |W| − 1, to track the position of the oldest update. Upon the
arrival of a new packet, we check the counter’s value and update the
register pointed to by the counter with the value of the new packet’s
rank. In our prototype, the sliding window has a size of 16 (which can be
extended by using sampling [41]). It uses 4 stages and accesses 4 registers
in parallel at each stage.

Quantile computation We compute the quantile of each incoming packet’s
rank based on the monitored distribution. Specifically, we count how many

3.7 implementation 75

times the packet’s rank is lower than a rank in the sliding window and then
divide the result by the window size. We perform the count by accessing
each register of the sliding window and comparing the packet’s rank
with the register’s value using the register’s stateful ALU. We output the
result of each comparison into a binary metadata field, outputj, which
is set to 1 if the packet’s rank is smaller than the register value and 0
otherwise. We aggregate the output values by progressively summing pairs
of them at each stage using non-stateful ALUs, requiring log2 |W| stages.
Finally, we divide the sum of the output values by the window size, |W|:
W.quantile(r) = (∑j outputj)/|W|. We select the window size to be a power
of 2, and implement the division through bit-shift operations.

Queue-occupancy monitoring We use a ghost thread [52], available in Tofino
2, to monitor queue occupancy levels at enqueue. Normally, this information
is only available in the egress pipeline, since packets need to traverse the
traffic manager to access it. We address this limitation by setting up a
ghost thread that periodically writes the queues’ occupancy levels (from
the egress) to a register accessible from the ingress pipeline. The ghost
thread takes two clock cycles to update the state of each queue and handles
one queue per invocation. This results in 8 clock cycles to update the state
of 4 queues. To scale PACKS across a larger set of queues and ports, we
approximate the admission and queue-mapping conditions by considering
the overall buffer occupancy instead of individual per-queue occupancies
(i.e., W.quantile(r) ≤ 1

1−k ·
B−b

B ·
i
n). Alternatively, we could use traditional

packet recirculation to convey queue-occupancy information to the ingress
pipeline (as done in [41]). The first option sacrifices accuracy, while the
second, throughput.

Admission and queue mapping After obtaining the quantile of the packet’s
rank based on the monitored rank distribution, W.quantile(r), and the
available buffer, b, we combine them to derive the admission and mapping
conditions. We rewrite them as: B · (1− k) · n ·W.quantile(r) ≤ (B− b) · i.
We compute the right side of the equation by using the math unit and bit-
shift operations. Simultaneously, we compute the left side of the equation
by picking a k value strategically such that the operation can be performed
by a bit shift on the quantile. Finally, we compute the comparison between
the two terms using the minimum operation of the math unit, and execute
the corresponding drop or enqueue action based on its result.

76 packs : admission-aware programmable scheduling

Resource Type Usage (Average per stage)

Exact Match Crossbar 3.4%

Gateway 3.4%

Hash Bit 1.3%

Hash Dist. Unit 4.2%

Logical Table ID 10.9%

SRAM 2.4%

TCAM 0%

Stateful ALU 23.8%

Table 3.2: Resource requirements of PACKS on Intel Tofino 2.

3.8 evaluation

We evaluate PACKS’s performance in three steps. First, we study its per-
formance in approximating PIFO’s scheduling and admission behaviors
for various rank distributions, and analyze its sensitivity to the configu-
ration parameters (§3.8.1). Second, we study its practicality even under
complex traffic workloads (§3.8.2). Finally, we evaluate PACKS’s reaction
and bandwidth allocation when deployed on hardware (§3.8.3).

3.8.1 Performance analysis

First, we analyze PACKS’s behavior across different rank distributions to
assess its performance in approximating PIFO’s admission and scheduling.

Methodology We implement PACKS, PIFO, FIFO, SP-PIFO and AIFO
in Netbench [26], a packet-level simulator. We study the performance of
a switch scheduling a constant bit-rate flow of 11Gbps over a 10Gbps
bottleneck link for one second. We assign each packet a rank within [0-
100), drawn from an exponential, Poisson, convex, or inverse-exponential
distribution. We set up PACKS and SP-PIFO with 8 priority queues of 10

packets, and AIFO and FIFO with a queue of 80 packets. We set PACKS’s
and AIFO’s window size to 1000 packets and the burstiness allowance, k,

3.8 evaluation 77

0

1

2

3

4

5

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(⋅1
05)

Rank Values

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(a) Poisson (inversions)

0

1

2

3

4

5

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
nv

er
si

on
s

(⋅1
05)

Rank Values

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(b) Inv. Exp. (inversions)

0

3

6

9

12

15

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f D
ro

ps
 (⋅

10
4)

Rank Values

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(c) Poisson (drops)

0

3

6

9

12

15

 0 10 20 30 40 50 60 70 80 90 100
N

um
be

r o
f D

ro
ps

 (⋅
10

4)

Rank Values

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(d) Inv. Exponential (drops)

Figure 3.18: PIFO approximations for various rank distributions.

to 0. We measure the number of scheduling inversions produced by each
rank (i.e., how often a packet with the rank is scheduled before a lower-rank
packet in the queue) and the number of dropped packets per rank.

Uniform case In §3.2.3, we have seen how PACKS outperforms existing
schemes under a uniform rank distribution (cf. Fig.3.3) in both the number
of scheduling inversions and the drop distribution across packet ranks.
Indeed, PACKS reduces the number of inversions by more than 3×, 10×
and 12× with respect to SP-PIFO, AIFO and FIFO. While all schemes drop a
similar percentage of packets (within ±0.03%), PACKS achieves the closest-
to-PIFO drop distribution across packet ranks. PIFO only drops packets
with ranks larger than 90. FIFO deviates furthest from PIFO by dropping
packets across all ranks. It is followed by SP-PIFO, which drops packets
with ranks as low as 20. AIFO and PACKS perform best, only dropping
packets with ranks above 77 and 79, respectively.

Alternative distributions (inversions) We obtain similar results for non-
uniform rank distributions. Fig. 3.18 shows the scheduling inversions and
the packet drops across ranks for the Poisson and inverse-exponential
rank distributions (we see similar results for the convex and exponential
distributions). In all cases, PACKS outperforms SP-PIFO and AIFO, and gets

78 packs : admission-aware programmable scheduling

0

25k

50k

75k

0 25 50 75 100

N
um

be
r o

f I
nv

er
si

on
s

Rank Values

SP-PIFO
|W| = 15
|W| = 25

|W| = 100
|W| = 1000

|W| = 10000
PIFO

(a) Window size (inversions)

0

25k

50k

75k

0 25 50 75 100

N
um

be
r o

f D
ro

ps

Rank Values

SP-PIFO
|W| = 15
|W| = 25

|W| = 100
|W| = 1000

|W| = 10000
PIFO

(b) Window size (drops)

Figure 3.19: PACKS’s window-size sensitivity (UDP, uniform).

closest to PIFO in inversions and packet drops. For the Poisson distribution,
PACKS reduces the number of inversions by 5× and more than 15× and
17× compared to SP-PIFO, AIFO and FIFO, respectively. Similarly, for
the inverse-exponential distribution, PACKS prevents over 7×, 14× and
15× more inversions than SP-PIFO, AIFO and FIFO, respectively. Notably,
PACKS predominantly prevents inversions among lowest-ranked packets,
which have higher priority.

Alternative distributions (drops) Under the Poisson distribution, all schemes
drop overall a similar number of packets (within ±0.04%), being SP-PIFO
the one with the highest drop rate. When considering the distribution of
dropped packets across ranks, PACKS and AIFO are the schemes most
closely approximating PIFO. Specifically, the lowest rank dropped by PIFO
is 59, while PACKS and AIFO drop packets starting at rank 56

4. Conversely,
SP-PIFO and FIFO show notably worse performance, dropping packets
with ranks as low as 36 and 20, respectively. We observe similar results for
the inverse-exponential distribution. In this case, however, while the total
number of packets dropped by PACKS and AIFO is similar to the one of
PIFO (+0.1% and +0.4%, respectively), SP-PIFO drops 42% more packets
than them. This is due to the highly skewed nature of the distribution,
which is hard for SP-PIFO to manage without admission control (cf. §3.4.4).

Sensitivity to window size Fig. 3.19 illustrates the impact of window size
on PACKS’s performance. Given that the rank distribution ranges from 0 to
100 and the overall buffer space is of 80 packets, PACKS performs best with
window sizes above |W| = 100, which capture the entire distribution. Since
the rank distribution is stable, a higher window size consistently leads to

4 Note that PACKS’s and AIFO’s drop distribution significantly overlap.

3.8 evaluation 79

0

5k

10k

0 25 50 75 100N
um

be
r o

f I
nv

er
si

on
s

Rank Values

FIFO
SP-PIFO
Shift = 0

Shift = +25

Shift = +50
Shift = +75

Shift = +100
PIFO

(a) Positive shift (inversions)

0

5k

10k

0 25 50 75 100

N
um

be
r o

f D
ro

ps

Rank Values

FIFO
SP-PIFO
Shift = 0

Shift = +25

Shift = +50
Shift = +75

Shift = +100
PIFO

(b) Positive shift (drops)

0

5k

10k

0 25 50 75 100N
um

be
r o

f I
nv

er
si

on
s

Rank Values

FIFO
SP-PIFO
Shift = 0

Shift = -25

Shift = -50
Shift = -75

Shift = -100
PIFO

(c) Negative shift (inversions)

0

5k

10k

0 25 50 75 100

N
um

be
r o

f D
ro

ps

Rank Values

FIFO
SP-PIFO
Shift = 0

Shift = -25

Shift = -50
Shift = -75

Shift = -100
PIFO

(d) Negative shift (drops)

Figure 3.20: Rank-distribution sensitivity (TCP uniform).

more stable queue bounds and better performance, as indicated by the
bumps in the distribution reflecting the behavior of priority queues. For
example, with |W| = 1000, PACKS performs very close to optimal, reducing
inversions by 22% compared to |W| = 100 and increasing the lowest-
dropped rank from 69 to 78. Further increasing the window to |W| = 10000
doesn’t improve performance significantly, only reducing inversions by 1%
and raising the lowest-dropped rank from 78 to 80, compared to |W| = 1000.

Window sizes below |W| = 100 lead to worse performance since the win-
dow cannot capture the entire distribution. Interestingly, as we reduce the
window size, PACKS’s behavior approaches that of SP-PIFO. Nevertheless,
even with very small window sizes, PACKS still outperforms. For instance,
with |W| = 15, which barely captures a 15% of the distribution, PACKS still
produces 30% less inversions compared to SP-PIFO and starts dropping
packets at rank 34 instead of 18.

Sensitivity to distribution shifts We assess how PACKS performs when
the monitored rank distribution differs from that of incoming packets. To do
so, we modify PACKS’s algorithm to consistently shift all ranks in the sliding
window by a factor. This approach does not reflect a real-world scenario

80 packs : admission-aware programmable scheduling

since, even under a drastic distribution shift in practice (e.g., a microburst),
packets from the “new distribution” would arrive in a continuous stream,
allowing the sliding window to adapt gradually as each packet arrives.
Still, it helps us understand PACKS’s performance boundaries. We run TCP
flows at 80% load, with packet ranked uniformly at random from 0 to 100.

Fig. 3.20a and Fig. 3.20b show the impact of shifting the ranks of the
sliding window by positive factors. This leads to more permissive admission
and queue-mapping decisions, as if we increased the priority of incoming
packets. When the shift reaches 100, all arriving packets have higher priority
than the ones in the sliding window, causing PACKS to admit all packets
and behave like a FIFO queue. Despite the extreme scenarios with shifts
≥75, PACKS exhibits significant robustness to positive distribution shifts.
For instance, with a shift of +25, PACKS vastly outperforms SP-PIFO by
reducing inversions by 34% and with a lowest-rank dropped of 46, as
opposed to 12 in SP-PIFO. Even with a shift of +50, PACKS performs
comparably to SP-PIFO in terms of total inversions while dropping 162×
fewer packets below the rank of 58.

Fig. 3.20c and Fig. 3.20d show the impact of shifting the ranks of the
sliding window by a negative factor. This is equivalent to decreasing the
priority of incoming packets, which has a more detrimental impact on per-
formance than positive shifts, and affects packet drops. Indeed, admission
control drops a percentage of packets equal to the magnitude of the shift.
With a -100 shift, PACKS drops all incoming packets. Similarly, a -75, -50

and -25 shift lead to dropping 75%, 50% and 25% of packets with the lowest
priority, respectively. For the subset of admitted packets, PACKS maintains
ideal behavior in terms of scheduling inversions. We can counteract the
effect of negative distribution shifts by increasing the burstiness allowance,
k, or decreasing the window size to speed up reaction time.

3.8.2 Performance in typical use cases

We now study PACKS’s performance under two common scheduling objec-
tives: minimizing flow completion times and enforcing fairness [1, 31, 41,
53]. These scenarios are challenging for PACKS because they involve large
and non-stationary rank distributions, which are difficult to monitor.

Methodology We use a leaf-spine topology with 144 servers connected
through 9 leaf and 4 spine switches, and set the access and leaf-spine links

3.8 evaluation 81

 0

 2

 4

 6

 8

 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(a) (0,100KB): Average FCT

 0
 5

 10
 15
 20
 25
 30

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(b) (0,100KB): 99th pctl. FCT

 10
 15
 20
 25
 30
 35
 40
 45
 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(c) [All flows]: Average FCT

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fr
ac

tio
n

of
 C

om
pl

et
ed

 F
lo

w
s

Load

FIFO
AIFO

SP-PIFO
PACKS

PIFO

(d) Completed flows

Figure 3.21: pFabric: FCT statistics across different flow sizes.

to 1Gbps and 4Gbps, respectively. We generate traffic flows following the
pFabric web-search workload [31]. Flow arrivals are Poisson-distributed
and we adapt their starting rates for different loads. We use ECMP and
draw source-destination pairs uniformly at random.

Setup pFabric We run pFabric [31] (without starvation prevention 5) on top
of PIFO, AIFO, SP-PIFO and PACKS, and assess their efficacy in minimizing
flow completion times. pFabric assigns ranks to packets based on their
remaining flow sizes. As suggested in [31], we approximate pFabric’s rate
control using standard TCP with an RTO of 3 RTTs. We configure PACKS
and SP-PIFO with 4 queues×10 packets and PIFO, AIFO and FIFO with 1

queue×40 packets. For PACKS and AIFO, we set |W| = 20 and k = 0.1.

Results pFabric Fig. 3.21 depicts the mean and 99th percentile FCT of
small flows (< 100KB), the average FCT across all flows, and the fraction of
completed flows. Across all loads, PACKS consistently achieves lower FCTs
compared to AIFO and SP-PIFO, and gets the closest to PIFO’s performance.

5 Starvation [31] is a limitation inherent to PIFO, and therefore of all its approximations. Previous
works have proposed solutions (e.g., PDA [43]) which can also run on PACKS.

82 packs : admission-aware programmable scheduling

0
2
4
6
8

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Load

FIFO
AIFO

SP-PIFO
AFQ

PACKS
PIFO

(a) (0,100KB): Average FCT

1

10

100

1000

10K 20K 30K 50K 80K 0.2-1M ≥2MFl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Flow Size

FIFO
AIFO

SP-PIFO
AFQ

PACKS
PIFO

(b) FCT split, 70% load

Figure 3.22: Fairness: FCT statistics at different loads.

In terms of average FCTs for small flows, PACKS achieves FCTs just 5%
to 9% longer than PIFO, which is remarkable given its use of just 4 queues.
In turn, PACKS outperforms SP-PIFO by 11% to 33%, AIFO by a factor of
2.25× to 2.6×, and FIFO by 3.2× to 9.2× (most benefit under heavy loads).

At the 99th pctl., PACKS achieves FCTs 8% to 49% longer than PIFO,
but remains better than SP-PIFO (from 2.2% to 12% better), AIFO (1.8× to
3.3×), and FIFO (5× to 10×).

Regarding the mean FCT across all flows, PACKS achieves on-par per-
formance with PIFO (the mean FCT of PACKS is even a bit lower–from
2% to 5%–due to long flows not completing transmission, cf. Fig. 3.21d).
Once again, PACKS consistently outperforms SP-PIFO across all loads (with
improvements ranging from 0.2% at the lowest load to 23% at the highest
load), AIFO (9% to 21%) and FIFO (13% to 2×).

Finally, PACKS’s fraction of completed flows closely matches that of PIFO
(± 0.01% to 0.2%). Moreover, PACKS achieves higher completion rates than
SP-PIFO, with improvements from 0.06% to 0.2%, and AIFO (resp. 0.3% to
1.2%). At the highest load, the completion rates of FIFO, AIFO, SP-PIFO,
PACKS and PIFO are 88%, 91.15%, 92.16%, 92.26% and 92.41%, respectively.

Setup fair queuing We run the Start-Time Fair Queueing rank design [32]
on top of the schedulers and evaluate their performance at enforcing fairness
across flows. We compare to FIFO and AFQ [33] for reference. We set the
bytes-per-round of AFQ to 80 packets. We use 32 queues×10 packets in
SP-schemes and 1 queue×320 packets for single-queue schemes. Same as [1,
41], we generate traffic from the pFabric web-search distribution, and assess

3.8 evaluation 83

fairness by measuring the flow completion time of short flows. For PACKS
and AIFO, we set the window size to 10 and the burstiness margin to 0.2.

Results fair queuing Fig. 3.22a depicts the average flow completion time
for small flows across loads from 20% to 80%. PACKS stays within 10–24%
of the ideal PIFO, and consistently outperforms FIFO, AIFO and AFQ
across all loads. Specifically, PACKS reduces the average FCTs for short
flows by 2.5–5.5×, 1.12×–2.4×, 9–27% with respect to FIFO, AIFO and
AFQ, respectively. PACKS performs similarly to SP-PIFO (within ±6%),
underperforming at lower loads, but outperforming by 6% at the highest
load (80% utilization).

Fig. 3.22b illustrates the average and 99th percentile flow completion
times across flow sizes at 70% utilization. PACKS’s performance consistently
stays within 17–26% of the ideal PIFO in terms of average FCT and within
15–54% for the 99th percentile across all flow sizes. It shows comparable
performance to SP-PIFO (within ±10% for average FCTs and ±20% for the
99th percentile) and AFQ for average FCTs (within ±15%). However, AFQ
outperforms at the 99th percentile, by up to 31%. For the smallest flows,
PACKS achieves the lowest average FCT, closely trailing AFQ by 5%.

3.8.3 Hardware testbed

We show that PACKS performs at line rate on actual hardware by running it
on the Edgecore Networks DCS810 (AS9516-32D) Intel Tofino2 Switch [21].
Same as previous works [1, 41, 53], we measure the bandwidth that PACKS
allocates to different priority flows over a bottleneck link. We generate
traffic between two servers, connected by a Tofino2 switch, using interfaces
of 100 Gbps (sender→switch) and 10 Gbps (switch→receiver). We run
four UDP flows of 20 Gbps each using MoonGen [34, 54]. We start flows
sequentially (one flow at a time), in increasing order of priority with a time
gap of 10 seconds between starts. We stop them sequentially in decreasing
order of priority, with 10 seconds between stops.

Fig. 3.23 depicts the flows’ bandwidth and how PACKS manages to effec-
tively prioritize traffic from lower ranks. While the FIFO queue distributes
the bandwidth uniformly across flows (failing at prioritizing traffic), PACKS
successfully allocates the available bandwidth to the highest-priority flow.

84 packs : admission-aware programmable scheduling

0
2
4
6
8

10

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

G
bp

s)

Time (s)

Flow 1
Flow 2

Flow 3
Flow 4

(a) FIFO Bandwidth-split

0
2
4
6
8

10

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

G
bp

s)

Time (s)

Flow 1
Flow 2

Flow 3
Flow 4

(b) PACKS Bandwidth-split

Figure 3.23: Bandwidth allocation for increasing-priority flows.

3.9 related work

Packet scheduling has been extensively studied for decades [17, 29, 31–33,
39, 55–58]. The concept of programmable scheduling was introduced by
[19, 20], which proposed the PIFO queue as an enabling abstraction. While
promising, implementing PIFO queues in hardware proved challenging.
Hence, a subset of follow-up works have suggested new hardware designs
such as PIEO [59], BMW-Tree [60], BBQ [61], and Sifter [62]. Other works
have focused on approximating PIFO behaviors on existing programmable
data planes: SP-PIFO [1], QCluster [43], PCQ [42], AIFO [41], Spring [47],
and Gearbox [44]. PACKS falls into the latter category.

3.10 conclusions

In this chapter, we presented PACKS, the first programmable packet sched-
uler that emulates PIFO queues on existing data planes in both rank ordering
and packet drops. PACKS runs on top of a set of priority queues and uses
packet-rank information and queue-occupancy levels during enqueue to
schedule packets in order of priority, determining whether to admit each
incoming packet and to which queue it should be mapped.

We fully implement PACKS in P4 and evaluate it on real workloads. We
show that PACKS better-approximates PIFO than state-of-the-art approaches.
Specifically, PACKS reduces the rank inversions by up to 7× and 15× with
respect to SP-PIFO and AIFO, and the number of packet drops by up to
60% compared to SP-PIFO. Under pFabric ranks, PACKS reduces the mean
FCT across small flows by up to 33% and 2.6×, compared to SP-PIFO and
AIFO. We also show that PACKS runs at line rate on existing hardware.

4
Q V I S O R

4.1 introduction

In the previous chapters we have proposed two programmable schedulers,
SP-PIFO and PACKS, allowing operators to specify (new) scheduling poli-
cies on high-level abstractions that can be deployed on existing switches.

These works have one major limitation: they only cover the case of single-
tenant scheduling, where all the traffic needs to be scheduled following one
single scheduling policy. For example, they may schedule traffic following
the Shortest-Remaining Processing Time policy to minimize FCTs [31, 39,
58]; or the FIFO+ policy to minimize tail latency [17, 29]; or a Fair Queuing
scheme to enforce fairness across pre-defined traffic classes [32, 55, 56].

In practice, however, most networks today (e.g., cloud, data-center net-
works, and wide area networks) are shared by multiple tenants running
various applications [63]. Each of these tenants may need to schedule their
traffic using different policies in order to achieve their performance goals.

In this chapter, we introduce the vision for QVISOR, a scheduling hypervisor
that aims at extending the existing programmable schedulers to enable multi-
tenant programmable scheduling on existing switches. With QVISOR, tenants
program the scheduling policies for their traffic flows; operators define how
tenants should share the available resources; and QVISOR does the rest:
deploying the scheduling policies into the underlying hardware.

In this chapter, we try to address the following research challenge:
“Can we simultaneously deploy multiple scheduling algorithms on the scheduling
resources of existing programmable data planes?”

Enabling multi-tenant scheduling on commodity switches requires solv-
ing two main challenges: (i) providing tenants a substrate where they can
specify their scheduling policies, and (ii) finding mechanisms to merge and
deploy the specified policies on top of the underlying hardware resources.

In other domains, this problem has long been solved thanks to virtualiza-
tion, which abstracts the hardware resources and allows multiple tenants

85

86 qvisor : multi-tenant programmable scheduling

QVISOR Synthesizer

Tenant 1 Tenant 2 Tenant 3

pFabric EDF WFQ

Operator

Hardware Scheduler

Pre-processor

QVISOR

T1 >> T2 + T3

Rank transformation

Configuration

Specification

Incoming packets

Control plane

Data plane

Figure 4.1: QVISOR’s high-level architecture.

to coexist on the same infrastructure. The key enabler is the hypervisor, an
interface between the tenants and the hardware, that deploys the applica-
tions of the tenants and orchestrates the hardware resources across them.
Similarly, to enable multi-tenant scheduling on commodity switches, we
need, essentially, a scheduling hypervisor.

A scheduling hypervisor Existing hypervisors typically virtualize compute
resources at the end-hosts (CPU, memory, and I/O), allowing multiple
tenants to access them while running their applications on virtual machines.
Tenants only need to worry about programming their application, with-
out having to mind about what other tenants do, nor about the details of
the underlying infrastructure. Operators just specify tenants’ access to re-
sources (e.g., offering isolation and/or certain guarantees) and how resource
conflicts should be resolved (e.g., by treating some tenants preferentially).

A scheduling hypervisor should follow the same intuition, but virtual-
izing the scheduling resources of the switch (i.e., the buffer and compute
resources to execute the scheduling policies). Tenants should specify the
scheduling policies to be used for their traffic on a high-level abstraction, as
if they were to run in isolation on dedicated hardware. The operator should
define how the scheduling resources should be shared across tenants (e.g.,
prioritizing traffic from certain tenants). The hypervisor should take care of
the rest: combining and deploying the specified policies into hardware.

QVISOR We envision QVISOR, a scheduling hypervisor to virtualize the
scheduling resources of commodity switches, allowing them to be shared
by multiple tenants (see Fig. 4.1). QVISOR takes as input a specification on

4.1 introduction 87

how tenants wish to schedule their traffic, along with a high-level policy by
the operator on how the scheduling resources should be shared. QVISOR
then comes up with a joint scheduling strategy that follows the per-tenant
policies while satisfying the operator’s constraints, and deploys it into the
underlying hardware.

Key challenges Realizing the vision for QVISOR, requires solving two
challenges. First, finding flexible and easy ways for tenants and operators
to specify their policies. Second, merging and deploying these policies into the
available infrastructure, while being able to reason about their performance.
The solutions to both challenges have to be co-designed: we can not offer
tenants a more-expressive abstraction than what can be later deployed,
since it would lead to non-compilable applications, nor a more-limiting one,
since it would lead to inefficient resource usage.

Insights We introduce a preliminary design of QVISOR that builds upon
the following insights:

• Tenants have the illusion that their traffic is scheduled by a PIFO
queue, which they can program using ranks.

• Operators define their policy with a composition language that en-
ables resource sharing and prioritization.

• With these definitions, the problem is reduced to generating a single
joint scheduling function, that combines the scheduling policies of the
tenants and the operator.

• The specification is a 2-layer scheduler where the leafs (resp. root) are
the intra- (resp. inter-) tenant policies.

• Multi-tenant policies have higher expressivity than single-tenant ones,
but this only affects the worst case. In practice, workloads are not
always active and do not always overlap, allowing us to multiplex
the scheduling resources over time. When workloads do overlap, we
resort to the high-level policy of the operator.

• Once we have a synthesized joint scheduling function, we can seam-
lessly deploy it to commodity schedulers.

• Overall, we essentially “trick” single-tenant schedulers to work as
multi-tenant programmable schedulers.

88 qvisor : multi-tenant programmable scheduling

Traffic volume

Time
t0 t1

Tenant 3
Background
Fair QueuingTenant 2

Deadline-based
EDF

Tenant 1
Interactive
pFabric

Figure 4.2: Example of a data-center workload.

4.2 motivation

Put yourself in the shoes of an operator managing a network with three
tenants, T1, T2, and T3 (see Fig. 4.2). Each tenant runs a different application.
Your task is to handle the congestion in a switch, where the workloads of
the three tenants coexist. The switch supports a PIFO queue, which you can
configure to distribute the available bandwidth across the tenants.

All tenants have specified the scheduling policies that they wish to use
for their traffic. T1 runs an interactive application, sensitive to delay. Thus,
T1 would like to use pFabric’s scheduling policy, which prioritizes flows
with shorter remaining time, to minimize FCTs [31]. T2 runs deadline-
constrained flows, where meeting deadlines is crucial but delay sensitivity
is low. Therefore, T2 picks the earliest-deadline-first (EDF) algorithm to
maximize meeting deadlines [40]. T3 runs background applications and
opts for a Fair Queuing scheme [55].

Based on the tenants’ contracts, you know that tenants T1 and T2 should
share the resources fairly, and should have priority over T3. Your task is
challenging for various reasons:

Problem 1: Scheduling policies clash with each other Within t0 < t < t1,
traffic from tenant T1 should be scheduled using pFabric, and traffic from
tenant T2, using EDF. How can we achieve this behavior on a conventional
scheduler? Both scheduling policies have different objectives, and prioritize
packets based on different metrics: EDF prioritizes packets based on their
flows’ deadlines and pFabric does it based on the remaining flow size [31,
40]. If we naively execute the two scheduling policies simultaneously, they
clash. Indeed, most packets from the deadline-constrained flows end up
taking the link resources, since the priorities defined by the EDF scheduling

4.2 motivation 89

policy are higher than the ones set by pFabric [43]. Thus, to reason about
how to combine policies together, we need a way to compare them fairly.

Idea 1: Homogenize scheduling policies We can “normalize” and “quantize”
policies into a common scale and granularity. This constrains their behavior
and helps us reason about their interaction. Once polices are homogenized,
we can compare them fairly, and think about how to merge them into a
joint scheduling policy.

Problem 2: The way policies clash changes over time Even if we have a
means to homogenize scheduling policies, their behavior is not constant: it
depends on traffic, and traffic always changes. Traffic shifts become more
drastic as tenants enter or leave the network. For example, at t1, tenants T1
and T2 become inactive and tenant T3 starts transmitting. T3 has different
performance requirements than T1 and T2 and, thus, requires a different
scheduling strategy. At the same time, traffic from T3 should be scheduled
with the lowest priority. How can we seamlessly switch between policies?

Idea 2: Predict traffic shifts or react upon them We can develop analysis
techniques to evaluate how different scheduling policies may work together,
either theoretically, offline (e.g., based on worst-case analysis from the given
specification) or online at runtime (e.g., based on the latest packets received).
We can use the results to predict and actuate upon potential traffic shifts.

If we have an upfront specification of each tenant’s policies, we can
develop static analysis techniques to evaluate the worst-case scenario for the
combined workloads. This allows us to smartly design combined scheduling
functions that enforce the desired behaviors, even under adverse conditions.
For example, if tenant T3 should be scheduled with lower priority than T1
and T2, we can shift all the priorities in T3’s scheduling policy so that, even
in the worst case, it does not impact the performance of the other tenants.

If we do not have the specification of all tenants in advance, we can
design reaction methods to adapt the scheduling policy at runtime, as
tenants enter or leave the network. Similarly to how we deploy forwarding
rules when a packet from a new flow arrives to an SDN switch, we can
adapt the switch’s scheduling policy under certain events. For example, an
event-driven controller could synthesize a new scheduling policy after the
first packets of a new workload arrived, and deploy it into the data plane.
While this may come with challenges, such as emptying the buffers (e.g., if
an incoming tenant has priority), or resetting the state of stateful scheduling

90 qvisor : multi-tenant programmable scheduling

functions, we believe that recently-proposed runtime programmable data
planes can help lighting the path [64].

These analysis techniques would also be valuable to prevent adversarial
workloads from potentially malicious tenants. For example, they could help
us develop monitoring techniques to identify such adversarial workloads
in the network and automatically stop them in case they ever occurred.

Problem 3: We don’t have a standard scheduler PIFO queues provide
us with a comfortable abstraction that eases the solution to the different
challenges. Indeed, PIFO queues schedule packets with the guarantee that
high-priority packets will always be scheduled before low-priority ones.
This allows us to reduce the problem of designing a scheduling hypervisor
into the one of analyzing how prioritization functions interact with each
other and how they can be combined effectively. Existing switches today,
however, do not support PIFO queues. Instead, they run, at most, PIFO
approximations on top of strict-priority queues or FIFO queues [1, 33, 41,
42]. These PIFO approximations support different operations, and they offer
various types of performance guarantees. How can we deploy multi-tenant
policies on top of these schedulers?

Idea 3: Develop standard APIs or build synthesizers We can build stan-
dard APIs that allow the deployment of combined scheduling policies
into existing schedulers. Alternatively, we can leverage program synthesis
to transform high-level scheduling specifications down to the available
hardware resources of existing switches.

To run on top of an existing scheduler, a scheduling hypervisor would
need a set of APIs to interact with the various configuration parameters of
the scheduler (e.g., to dedicate a set of priority queues to a certain tenant).
As such, we would need to abstract the operations that the scheduler can
support, and provide them to the hypervisor as a design space. With them,
the hypervisor would be able to come up with a possible configuration, that
satisfied the specification and reason about its guarantees. Further, given
the set of operations supported by the scheduler, the hypervisor could
leverage program synthesis to come up with a scheduling policy that fit
into the available resource constraints, even if it could only satisfy a part of
the input specification [65].

4.3 qvisor overview 91

4.3 qvisor overview

We present a preliminary design for QVISOR, that defines its architecture
and grounds the foundation for future research.

At the high-level, we envision QVISOR to work as follows (cf. Fig. 4.1).
First, every tenant must specify the scheduling algorithms that should
schedule the traffic within their flows. Second, the network operator must
define a policy on how the scheduling resources should be distributed
across tenants. Based on these inputs, QVISOR should: (i) synthesize a joint
scheduling policy that follows the policies specified by the tenants, while
respecting the constraints given by the operator; and (ii) deploy this policy
into the underlying hardware to apply it to incoming packets.

Accordingly, we propose a design with two parts: a synthesizer that runs in
the control plane and generates the joint scheduling policy from the inputs,
and a pre-processor that runs in the data plane and “prepares” packets such
that they can be scheduled with the synthesized policy.

In the following, we describe QVISOR’s inputs (§4.3.1), synthesizer (§4.3.2)
and pre-processor (§4.3.3). We also discuss how to deploy QVISOR on
existing hardware schedulers (§4.3.4).

4.3.1 QVISOR inputs

Per-tenant scheduling policies Tenants define the scheduling policy that
they want to use for their traffic as a tuple composed of a traffic subset and
a scheduling algorithm. For example, tenant T1 = {P1, pFabric} defines
a set of packets P1, to be scheduled with the pFabric policy. Another
tenant, T2 = {P2, STFQ}, comprises the set of packets P2 which have to be
scheduled using the STFQ algorithm. Note that a tenant refers to a traffic
segment (e.g., from a application), not necessarily a physical tenant.

Packet labels For QVISOR to process incoming packets, it requires tenants
to identify their packets with two labels: the tenant identifier, and the packet
rank. Intuitively, the tenant identifier allows QVISOR to decide how to
schedule the packet with respect to packets from other tenants, and the
packet rank describes how to schedule the packet with respect to other
packets from the same tenant. Packet ranks define the priority with which
packets should be scheduled based on the rank function picked by the

92 qvisor : multi-tenant programmable scheduling

T1: {7,8,9}

T2: {1,3}

T3: {3,5}

QVISOR Pre-processor
{1,2,3}

{4,6}

{5,7}

PIFO

31879

54213

12345

 T1 >> T2 + T3
 Tenant 3: Fair Queuing {1,2}
 Tenant 2: EDF {1, 3}
 Tenant 1: pFabric {7,8,9}

A

A B

B

Figure 4.3: QVISOR’s transformations.

tenant. Ranks can be computed at the end-host or at the same switch, but
always have to be specified before reaching QVISOR’s pre-processor.

Operator’s specification The operator defines a high-level inter-tenant
policy using a simple string with the tenant identifiers, separated by three
possible operators: {>>}, {>}, and {+}. The first operator indicates that
the preceding tenant(s) should have strictly-higher priority than the fol-
lowing one(s), mandating isolation. The second, states that the preceding
tenant(s) should be preferentially treated with respect to the following ten-
ant(s). In this case, the priority is applied in a best-effort manner. The third
operator indicates that preceding and following tenant(s), should share the
resources. For example, the specification {T1 >> T2 > T3 + T4 >> T5}
indicates that tenant T1 should have strictly-higher priority than tenants
T2, T3, and T4, which in turn should have strictly-higher priority than T5. It
also defines that tenant T2 should have higher priority, whenever possible,
than T3 and T4, and that tenants T3 and T4 should share their resources.

4.3.2 QVISOR synthesizer

Given the input policy specifications of the tenants and the operator, the goal
of the synthesizer is to generate a joint scheduling function that combines
the algorithms of the different tenants, such that they can be simultaneously
used, while satisfying the high-level requirements of the operator.

We express the joint scheduling function as a set of rank transformation
functions to be applied to the ranks of the incoming packets. These functions

4.3 qvisor overview 93

are then deployed into the pre-processor and applied at line rate to incom-
ing packets. QVISOR’s synthesizer supports two types of transformation
functions: rank-shift and rank-normalization operations.

Rank shift It allows the prioritization of traffic from certain tenants over
others. For instance, to prioritize traffic from T1 over T2, we can shift the
ranks of all packets of T1 such that they have lower ranks than all packets
from T2. Alternatively, we can shift all ranks of T2 such that they are higher
than the ones of T1. If the rank distributions are bounded and known in
advance, we can implement most priority operations by just applying shifts
to the ranks of the different tenants.

Rank normalization As shown in §4.2, naively scheduling packets with
various rank functions simultaneously on the same scheduler can be detri-
mental. The normalization function consists in bounding the ranges of a
given rank function, and quantizing its ranks into discrete levels such that
they can be fairly compared with the (normalized) ranks of other tenants.
With this function, different tenants can be scheduled simultaneously with a
higher fairness and without loosing their intra-tenant scheduling behavior.

4.3.3 QVISOR pre-processor

For each incoming packet, QVISOR’s pre-processor parses the packet head-
ers and extracts the tenant identifier and the packet rank. It uses these tags to
query the transformation functions that should be applied to the packet,
based on the results of the synthesizer. It executes them, updates the rank,
and forwards the packet to the hardware scheduler.

Example Fig. 4.3 shows QVISOR’s pre-processor handling a sequence of
packets from tenants T1, T2, and T3, ranked using pFabric, EDF, and FQ
algorithms, respectively. The operator has specified that traffic from T1
should have higher priority than traffic from T2 and T3, which should
share the resources. Given these inputs, the synthesizer has generated three
transformation functions: packets from T1 carrying ranks {7, 8, 9}, have
to be re-labeled with ranks {1, 2, 3}, respectively; packets from T2 with
ranks {1, 3} have to be transformed into {4, 6}; and packets from T3 with
ranks {3, 5}, into {5, 7}. The pre-processor applies these transformations
and forwards the traffic to the scheduler (a PIFO queue), which sorts the
packets based on ranks. As a result, the output sequence satisfies the input

94 qvisor : multi-tenant programmable scheduling

specifications: all packets from T1 have the highest priority, and the traffic
from tenants T2 and T3 share the resources evenly. At the same time, traffic
within each tenant is scheduled in order of rank, following the specified
ranking algorithm and achieving their desired performance.

4.3.4 QVISOR on existing schedulers

To run QVISOR on top of an existing scheduler, we have to consider two
aspects. First, such schedulers consist of the baseline hardware (e.g., a set
of FIFO queues), and some pre-processing function (e.g., to map packets to
queues, or to decide which packets to admit). To virtualize them, we need to
virtualize both, the hardware and the functions on top. Second, differently
from PIFO queues, these schedulers do not always guarantee perfect packet
sorting based on ranks. Thus, QVISOR may need additional configurations
to fulfill the specification (e.g., dropping packets above a certain rank or
dedicating queues to some tenants). As such, in order for QVISOR to run on
existing schedulers, it should know what packet-processing operations they
support and what guarantees they provide. With this information, QVISOR
should be able to synthesize a set of operations to satisfy the specification
while staying within the available resources.

For example, in Fig. 4.3 we need to prioritize traffic from T1. In most
existing schedulers [1, 42, 43], we can only guarantee such prioritization
by allocating dedicated queues. This is, if we have a scheduler with five
queues, we can map traffic from T1 to the three highest-priority queues,
and traffic from T2 and T3 to the two lowest-priority queues. Then, we need
to run two mapping functions in parallel: one to map traffic from T1 to the
first three queues based on the pFabric policy, and another to map traffic
from T2 and T3 to the last two queues, based on the EDF and FQ algorithms
fairly combined.

4.4 preliminary evaluation

In this section, we show the potential of QVISOR and prove that it is possible
to simultaneously run multiple scheduling algorithms on top of a single-
tenant scheduler. We implement a proof-of-concept version of QVISOR on
Netbench [26], a packet-level simulator. We evaluate it when scheduling
the traffic from two tenants on a data-center network. We use a leaf-spine

4.4 preliminary evaluation 95

 0

 1

 2

 3

 4

 5

 6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

p
F
a
b
ri
c
 F
C
Ts

 (
m
s
)

Load

FIFO: pFabric and EDF
PIFO: pFabric and EDF
PIFO: pFabric

QVISOR: EDF >> pFabric
QVISOR: pFabric + EDF

QVISOR: pFabric >> EDF

(a) (0,100KB): Mean FCTs

 0

 50

 100

 150

 200

 250

0.2 0.3 0.4 0.5 0.6 0.7 0.8

p
F
a
b
ri
c
 F
C
Ts

 (
m
s
)

Load

FIFO: pFabric and EDF
PIFO: pFabric and EDF
PIFO: pFabric

QVISOR: EDF >> pFabric
QVISOR: pFabric + EDF

QVISOR: pFabric >> EDF

(b) [1MB,∞): Mean FCTs

Figure 4.4: QVISOR’s performance.

topology with 144 servers connected through 9 leaf and 4 spine switches,
and set the access and leaf-spine links to 1Gbps and 4Gbps, respectively.
The first tenant runs a data-mining workload that needs to be scheduled
with the pFabric algorithm. The second tenant runs 100 flows that transmit
at a constant bit-rate of 0.5Gbps between pairs of servers picked uniformly
at random, which have to be scheduled following the EDF algorithm.

We measure the flow completion time of the pFabric traffic, under various
loads, when the workloads are scheduled by: a FIFO queue, a PIFO queue,
and QVISOR on top of a PIFO queue under three different policies: when
the pFabric traffic is prioritized, when the EDF traffic is prioritized, and
when both tenants share the resources. We also analyze the ideal case in
which there is only pFabric traffic in the network.

Fig. 4.4 illustrates the resulting flow completion times for both, small
and big flows. We see how, FIFO and QVISOR with a policy that prioritizes
EDF traffic, are the most detrimental cases for pFabric. This is expected: for
the first, the FIFO scheduler can not prioritze traffic, and thus the pFabric
policy becomes useless; and for the second, pFabric traffic gets blocked
behind EDF traffic. We also see how naively executing the two scheduling
policies on a PIFO queue is detrimental for pFabric, since most of the
pFabric packets get deprioritized after the ones of EDF. Instead, when we
use QVISOR with a policy that either prioritizes pFabric, or lets both tenants
share the resources fairly, pFabric’s traffic achieves a performance that is
either ideal (i.e., equivalent to when running in isolation), or very close.

96 qvisor : multi-tenant programmable scheduling

4.5 looking forward

The path towards scheduling virtualization is still plenty of open problems.
In the following, we discuss a subset of them.

Increasing specification expressivity In our preliminary QVISOR design,
tenants specify their scheduling algorithms using ranks, and operators
define their policies using three basic operators (§4.3.1). We expect future re-
search to explore novel QVISOR designs which can support more expressive
specifications. For example, recent research has proposed more complex
abstractions such as PIFO trees or Directed Acyclic Graphs (DAGs) [17,
19, 20, 36, 66, 67], which offer a higher degree of expressivity for both
tenants and operators. With them, tenants can specify hierarchical and
non-work-conserving scheduling algorithms, and operators can specify
complex relations across tenants (e.g., multiple tiers). How to support these
abstractions on QVISOR is an open question.

Compiling scheduling policies into hardware We also expect future re-
search to focus on the interaction between QVISOR and existing schedulers.
As discussed in §4.3.4, to work on existing infrastructures, QVISOR needs
to be aware of the operations that they support. These operations have to be
abstracted and provided to QVISOR as a domain-specific language, which it
can then use to synthesize scheduling configurations. QVISOR also needs to
know the guarantees that these operations offer, to be able to reason about
whether the synthesized configurations can satisfy the specifications.

We could frame QVISOR’s goal as a compilation problem where, given a
high-level specification of the scheduling policies, and the design space of
the operations supported by hardware, the objective is to come up with
a set of operations that satisfies the policies. In a second step, we could
take a synthesis approach, where QVISOR would not just fail if the desired
policy could not be compiled, but would propose partial specifications imple-
mentable on the available resources. QVISOR would output the proposed
configuration, with the supported specifications and the offered guarantees.

Optimizing configurations at runtime We expect future designs of QVISOR
to optimize at runtime both, the joint scheduling policy (e.g. computing
transformation functions at line rate, based on the distribution of the lat-

4.6 related work 97

est packets), and the hardware-scheduler configurations (e.g., reallocating
queues mapped to a tenant if the tenant is not transmitting).

Multi-objective scheduling algorithms In QVISOR, we have asked our-
selves whether it is possible to run multiple scheduling algorithms on
a single infrastructure. We have considered the case of having multiple
tenants with different objectives. Another perspective would be to analyze
whether we can achieve multiple objectives simultaneously on the same
traffic. For example, Fair Queuing schemes enforce fairness, but also help in
reducing FCTs, since they implicitly prioritize short flows. Multi-objective
scheduling algorithms add another dimension to the QVISOR problem,
offering new opportunities to combine traffic with similar requirements.

Synthesizing scheduling algorithms With the advent of programmable
scheduling, we have more abstractions than ever to represent scheduling
algorithms [17, 20] as well as algorithms for various objectives. Could we
abstract and generalize this knowledge to create scheduling algorithms
for arbitrary performance objectives? This is, given a workload and a
performance goal (e.g., as a utility function or an SLA), could we synthesize
the optimal scheduling algorithm?

Cross-device virtualization Recent works have managed to implement
multi-tenant scheduling policies at the end-hosts, allowing the virtualization
of the scheduling resources across tenants at the NICs [36, 66]. QVISOR
enables multi-tenant scheduling in the network at commodity switches. As
such, similarly to works in other domains [68, 69], we expect future research
to propose mechanisms to orchestrate the scheduling virtualization from a
network-wide perspective.

4.6 related work

Packet scheduling Historically, most research on packet scheduling has fo-
cused on the design of algorithms with a single performance objective, such as
enforcing fairness across traffic classes [29, 32, 55–57], minimizing FCTs [31,
39, 58], or minimizing jitter [17, 29]. Recently, researchers have explored
the possibility of a universal scheduler capable of replicating any given
algorithm [17, 18]. The lack of such a silver bullet [18] has prompted the
development of programmable scheduling [19] and the emergence of new
abstractions to enable it [17, 20, 36, 59, 66], some of which are compatible

98 qvisor : multi-tenant programmable scheduling

with commodity hardware [1, 33, 41, 42, 44, 59]. As a result, while opera-
tors today cannot satisfy all scheduling objectives simultaneously, they can
approximate most individual policies on existing devices.

In QVISOR, we bring up a new research question: is it possible to simul-
taneously implement multiple scheduling algorithms on a shared hardware
scheduling infrastructure? We answer positively by proposing a scheduling
hypervisor that navigates the space between programmable scheduling,
and the ideal concept of a universal packet scheduler.

Virtualizing programmable networks Previous works have focused on
virtualizing programmable networks, from their end-host counterparts to
the in-network resources [64, 70–81]. While most solutions target software
switches, SmartNICs or NetFPGAs [74, 77, 79, 80], a few focus on hardware
switches [64, 72–74, 82]. Among them, [73, 74, 82] optimize resource sharing
at compile time by combining multiple applications into a single program,
[64] enables runtime reprogramming of switch data planes, and [72] facili-
tates the dynamic sharing of switch resources across applications. Only [80,
81] address the virtualization of scheduling infrastructure in programmable
switches, but they do not virtualize programmable scheduling policies.

4.7 conclusion

We introduced a vision for QVISOR, a scheduling hypervisor to virtualize
the scheduling resources in commodity switches, enabling efficient resource
sharing among multiple tenants. QVISOR acts as an intermediary between
tenants and the underlying hardware. It allows tenants to program their
own policies for their traffic, and operators to define a high-level policy
on how resources should be shared. With these inputs, QVISOR creates a
joint scheduling strategy that combines the tenant policies, while satisfying
the operator’s conditions, and deploys it to hardware. As a result, QVISOR
brings multi-tenant programmable scheduling to conventional switches.

5
A C C - T U R B O

5.1 introduction

Pulse-wave DDoS attacks have recently managed to take down critical
network infrastructure while causing enormous financial and reputational
damages [83–86]. In contrast to conventional DDoS attacks, which grow
steadily and persist longer in time, pulse-wave DDoS attacks consist of high-
rate short-lived bursts. Each burst typically uses a different attack vector
(e.g., NTP, DNS, Memcached) and can reach hundreds of Gbps [87–89].

The threat in pulse-wave attacks resides in that they target the Achilles’
heel of existing DDoS mitigation systems: their reaction time. Most in-
network DDoS defenses today (both in research and production) rely on
some sort of offline facility that can either directly scrub traffic [90–95],
orchestrate a routing-based defense [96, 97], or deploy an in-network pre-
configured mitigation [98, 99]. The time required for an in-network defense
to reach this external facility and deploy the corresponding defense can
be in the order of seconds to minutes [88]. Pulse-wave attacks exploit this
vulnerability by sending traffic pulses that force the DDoS defense to repeat
this control loop over and over. By keeping the defenses in a constant
transient state, pulse-wave attacks manage to make them ineffective. If the
defenses rely on traffic redirection, pulse-wave attacks may even produce
route flapping in the network [100].

Designing a pulse-wave defense is intricate. Like conventional-DDoS
defenses, an ideal pulse-wave defense needs to be, first, generic, to identify
a wide variety of attack vectors at different granularity [101, 102]. Generic
techniques require unsupervision and incur the risk of misclassifying traf-
fic. Thus, an ideal defense also needs to be measured in responding to
attacks [103]. Most DDoS defenses fail at the first condition. For example,
signature-based defenses [91, 98, 99] are not generic. They only cover a
small set of vectors and can not keep up with the constantly-growing list
of new attacks [101, 102]. Similarly, most congestion-management tools
(e.g., heavy-hitter detectors or active queue management) lack granular-
ity: they only work at the per-flow level or the whole-traffic level. Other

99

100 acc-turbo : in-network denial-of-service defense

defenses fail at satisfying the second condition. For example, drop- or
routing-based defenses [104, 105] strongly degrade performance in case of
misclassification.

Aggregate-Based Congestion Control (ACC) was proposed two decades
ago, satisfying the two design conditions [106]. ACC is a canonical mechanism
to reduce the impact of congestion caused by generic traffic aggregates, with
a measured bandwidth control. At a high level, ACC is a feedback loop
that iteratively: (i) infers the aggregates causing the congestion; before (ii)
reducing their throughput to a reasonable level. To infer the aggregates,
ACC clusters the headers of packets dropped by a Random Early Detection
(RED) queuing discipline. ACC then rate-limits the inferred aggregates to
keep the total traffic throughput below the link capacity.

While ACC is effective at inferring and controlling conventional DDoS
attacks, it fails at mitigating pulse-wave attacks, as it cannot keep up with
the required fast reaction times. The reason is two-fold: (i) ACC relies on
offline inference and control mechanisms, which run on either a separate
server or a control plane, and (ii) ACC leverages a threshold-based defense
activation. By running offline, ACC suffers from slow reaction time, which
opens the door to pulse-wave DDoS attacks. By relying on threshold-based
activation, ACC either further slows down reaction time or increases the
probability of false positives, which negatively impacts its performance. In
our experiments, even with the best configuration, ACC drops ≈ 20% of
benign traffic in the event of a pulse-wave attack (§5.2.2).

Activation Inference Control

ACC [106] Threshold-
based

Offline clustering
on RED drops

Uniform rate limiting
using estimated rates

ACC-Turbo Always-on Online clustering
on all traffic

Programmable
scheduling using
exact rates

Table 5.1: ACC-Turbo techniques vs. ACC.

Our work In this chapter, we redesign ACC for pulse-wave DDoS defense.
We propose ACC-Turbo: the first sub-second-reaction-time aggregate-based
congestion control mechanism that mitigates pulse-wave DDoS attacks
by running at line-rate on commodity hardware. ACC-Turbo strategically

5.1 introduction 101

combines two key techniques: online clustering directly in the data plane to
infer attacks, and programmable scheduling to mitigate them (cf. Table 5.1).

First, ACC-Turbo offloads the clustering process to the data plane and
analyzes all the traffic at line rate (instead of just a sample). This allows
ACC-Turbo to speed up reaction time substantially. Further, since data-plane
processing does not impact traffic latency, ACC-Turbo runs the clustering
algorithm continuously. This eliminates the need for a threshold-based
activation, which can be vulnerable to pulse-wave attacks and opens the
door to potential false positives. The always-on design enables ACC-Turbo to
anticipate the congestion events, achieving yet-faster reaction time.

Second, ACC-Turbo uses programmable scheduling to deprioritize ma-
licious traffic instead of dropping or rate-limiting it. Doing so has three
advantages: (i) it accommodates fine-grained assessments which can ad-
just to the requirements of individual aggregates, increasing fairness; (ii)
it adapts at the per-packet level, being able to react to traffic variations
rapidly, achieving faster and more-accurate bandwidth allocations; and (iii)
it only leads to hard drops under congestion, being transparent otherwise.

Evaluation We implement ACC-Turbo in P4 [28] and run it on program-
mable switches (Intel Tofino). We show that ACC-Turbo effectively mitigates
pulse-wave DDoS attacks in real-time (i.e., less than 1s reaction time),
rapidly adapting to attack variations. We also compare ACC-Turbo with
Jaqen [98], a state-of-the-art DDoS defense. We show that ACC-Turbo is at
least 10× faster than Jaqen in mitigating attacks while also being safer.

Contributions The main contributions of this chapter are:

• An online-clustering approach to infer pulse-wave DDoS attacks at
scale directly from the network (§5.4).

• A scheduling algorithm to mitigate pulse-wave attacks and minimize
their impact on background traffic (§5.5).

• An implementation of ACC-Turbo in Python and P4 (§5.6).

• A comprehensive evaluation showing ACC-Turbo’s practicality and its
ability to run on hardware (§5.7, §5.8).

102 acc-turbo : in-network denial-of-service defense

In Out

Output Queue

High-BW
Aggregate?

Yes

No

ACC Agent

Inferred
Aggregates

RED
Dropping?

No

Report
Yes

Rate Limiter

Not dropped
Rate Limit
Sessions

FIFO

Figure 5.1: ACC architecture [106].

5.2 background

In this section, we review the design of ACC (§5.2.1), as well as its limitations
in mitigating pulse-wave DDoS attacks (§5.2.2).

5.2.1 Aggregate-based Congestion Control

Aggregate-based Congestion Control is a mechanism for inferring and
controlling high-bandwidth aggregates that persistently overload a link in
the network. In this chapter, we focus on its local version, which runs on
the switch that gives access to the congested link.1

Fig. 5.1 shows the architecture of an ACC-enabled switch. The core of
ACC is a RED module, implemented on top of a FIFO queue. This module
monitors the average queue size of the FIFO queue and drops packets
probabilistically depending on its size. If the FIFO queue is almost empty,
all incoming packets are accepted. As the queue grows, the probability
of dropping an incoming packet increases. When the queue is full, the
probability is at its maximum, and all incoming packets are dropped.

Whenever the RED module decides to drop a packet, it reports the header
of the dropped packet to an ACC Agent. The ACC Agent periodically ana-
lyzes the packet headers of all dropped packets and tries to infer the traffic
aggregates responsible for the congestion. When the ACC Agent identifies

1 The original work also includes a “pushback” mechanism to extend the rate-limiting policies
to upstream switches. This part is out of our scope.

5.2 background 103

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25 30 35 40 45 50

D
ro
p
R
at
e

Time (s)

(a) No ACC

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25 30 35 40 45 50

D
ro
p
R
at
e

Time (s)

(b) ACC

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

K=35s
K=30s

K=25s
K=20s

K=15s
K=10s

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25 30 35 40 45 50

D
ro
p
R
at
e

Time (s)

(c) ACC: Impact of K

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25 30 35 40 45 50

D
ro
p
R
at
e

Time (s)

(d) ACC-Turbo

Figure 5.2: Performance of ACC and ACC-Turbo in the original experiment [106].

an aggregate, it creates a rate-limiting session to police its throughput. From
that point onwards, all upcoming packets belonging to the aggregate are
rate-limited before being processed by the RED module.

Identifying congestion The ACC Agent is activated when the output queue
experiences sustained high congestion. This occurs when the drop rate in
the output queue exceeds a pre-defined value, phigh, during a certain time
period, K, which is also pre-defined.

Inferring aggregates The ACC Agent infers traffic aggregates based solely
on IP prefixes. At the high level, it extracts a list of either source or desti-
nation IP addresses that account for more than twice the mean number of
packet drops and clusters them into 24-bit prefixes. To minimize collateral

104 acc-turbo : in-network denial-of-service defense

damage, ACC then walks down the prefix subtree for each of the aggregates,
trying to obtain longer prefixes that still contain most of the packet drops.

Rate-limiting aggregates For each aggregate inferred, the ACC Agent
then computes the bandwidth to which it should be rate-limited. This limit
is computed such that the drop rate at the output queue, gets below a
pre-defined value, ptarget. To that end, the ACC Agent, first, sorts the list
of inferred aggregates by their number of drops (highest, first). Then, it
computes the excess arrival rate at the output queue, Rexcess, defined as the
amount of traffic that should be dropped in order for the drop rate to get
below ptarget. Finally, the ACC Agent determines the minimum number
of aggregates that should be rate-limited, |A|, and the rate to which they
should be limited, L, such that the total rate is reduced by Rexcess:

|A|

∑
i=1

(Aggregate[i].rate− L) = Rexcess

With this design, ACC manages to be generic (inferring attacks agnosti-
cally to their characteristics) and measured (rate-limiting inferred attacks
instead of just dropping them).

Experiment We illustrate ACC’s performance with packet-level simulations
(cf., §5.8 for setup details). We reproduce ACC’s original experiment [106].
It consists in scheduling five aggregates (1-5) over a bottleneck link using
FIFO, and ACC, respectively. Aggregates 1-4 are constant-bit-rate flows.
Aggregate 5 is a variable-rate flow which represents an attack, and starts
increasing (resp. decreasing) its rate at t = 13s (resp. t = 25s).

Fig. 5.2a and Fig. 5.2b show the bandwidth share across the five ag-
gregates (top) and the drop rate at the output queue (bottom) when no
protection (i.e., FIFO) and ACC are used, respectively. ACC is configured
with phigh = 0.1, K = 2s, and ptarget = 0.05. Table 5.2 details the rest of
parameters. Without ACC, we see how the attack traffic captures most of
the link bandwidth, degrading the performance of the other aggregates.
With ACC, the attack is efficiently mitigated. Indeed, when the drop rate
at the output queue exceeds phigh, the ACC Agent infers the attack and
rate-limits it sufficiently to reduce its impact on background traffic.

Finally, we also see how the reaction time of ACC is ≈ 4s. This is the
time since the first attack packets arrive (at t = 13s), until the defense is
deployed (at t = 17s). This time is mostly driven by the monitoring-window
size, K. Indeed, for smaller K values, ACC checks more often whether phigh

5.2 background 105

Name Definition Value

K Sustained-congestion period 2s

phigh Sustained-congestion droprate 0.1

ptarget Target droprate 0.05

k Exponential moving average interval 0.1s

Sessions Maximum number of rate-limiting sessions 5

Release
Time

Minimum time required for an aggregate to
be released after rate-limiting starts

10s

Free Time Minimum time required for an aggregate to
be released after it is detected to “behave”

20s

Cyc. Time Time to revisit the aggregate 5s

Init. Time Time to revisit the aggregate in initial phase 0.5s

Table 5.2: List of the ACC parameters used in the simulations.

is exceeded, being able to identify faster whenever that occurs. A lower K,
however, does not always imply a faster reaction time (cf. Fig. 5.2c). For
example, K = 10s achieves a slower reaction time than K = 15s. The reason
is that when K = 10s, even though the threshold is checked first at t = 10s,
it is not triggered until t = 20s, when phigh is reached.

5.2.2 Limitations of ACC

While ACC manages to defend against conventional DDoS attacks success-
fully, it is vulnerable to pulse-wave DDoS attacks. The reason is two-fold.
First, ACC uses offline inference and control mechanisms, which run on
either a separate server or a control plane [106]. Pulse-wave DDoS attacks
are specially crafted to target the time required by such control planes to
compute and deploy the right DDoS defense. They do so by sending short
high-rate traffic pulses which morph over time. These pulses congest the
link resources while the inference and control processes are running. By
the time the inference and control processes manage to converge and ACC
mitigates the attack, another pulse comes in, forcing the control loop to
start the mitigation process all over again.

106 acc-turbo : in-network denial-of-service defense

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

(a) No ACC

0

20

40

60

80

100

0.01 0.025 0.05 0.1 0.25 0.5 1 1.5 2

%
Be
ni
gn

D
ro
ps

K (seconds)

ACC-Turbo
ACC
FIFO

(b) Speed vs. accuracy

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

(c) ACC

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Fr
ac
tio
n
of
Li
nk

Ba
nd
w
id
th

Time (s)

Agg. 1
Agg. 2

Agg. 3
Agg. 4

Agg. 5
All

(d) ACC-Turbo

Figure 5.3: Performance under morphing attack.

The second reason is that ACC relies on a threshold-based defense
activation, which introduces a second vulnerability to pulse-wave attacks:
If we configure a too small threshold (to speed up reaction time), the
probability of false positives (i.e., benign traffic bursts identified as attacks)
increases, as we prove in §5.8. In contrast, if we configure a too large
threshold (to maximize accuracy), reaction time gets slower, opening the
door to pulse-wave attacks. In ACC, false positives are especially concerning
under attack, given that (i) ACC rate-limits all aggregates to the same
amount, and (ii) its rate-limiting policies have long-lasting effects (cf. §5.2.1).

Example We evaluate ACC’s mitigation efficiency in the case of a pulse-
wave attack composed of four vectors (starting at 5s, 15s, 25s, and 35s). For
simplicity, we represent the four pulses as a single “attack” aggregate (i.e.,
aggregate 5). We leverage four constant-bit-rate flows as background traffic
(i.e., aggregates 1-4), which transmit at ≈ the link capacity.

Fig. 5.3a and Fig. 5.3c illustrate the bandwidth share at the output link
when FIFO and ACC (configured as in §5.2.1) are used. We see how ACC
fails at mitigating the attack, only managing to defend the second half of
attack pulses. By the time the monitoring window K is triggered, and phigh
is reached, the pulse-wave attack has already managed to throttle benign
traffic. Fig. 5.3b shows how reducing the size of the monitoring window,

5.3 overview 107

K, does not help. In fact, due to false positives, the performance also gets
bounded for the smallest K values, with ≈ 20% of benign traffic dropped.

Given the incapacity of ACC to mitigate pulse-wave DDoS attacks, we
propose ACC-Turbo. With an under-second reaction time, and not using a
threshold-based activation, ACC-Turbo successfully mitigates both conven-
tional and pulse-wave DDoS attacks (cf., Fig. 5.2d, resp. Fig. 5.3d).

5.3 overview

In this section, we present the threat model (§5.3.1), and introduce an
overview of ACC-Turbo’s design (§5.3.2).

5.3.1 Threat model

Attacker The attacker’s objective is to generate a pulse-wave DDoS attack
(i.e., a series of short-duration high-rate traffic pulses) towards a critical
link of the network in order to exhaust its capacity and prevent legitimate
flows from using it. To that end, the attacker is free to generate any kind of
attack traffic. For instance, the attacker can rely on: (i) a botnet of infected
devices which directly floods traffic towards the link; (ii) reflection and
amplification techniques, which send spoofed requests to open servers
such that their responses cross the link; or even (iii) complex link-flooding
attacks which exchange low-rate flows from numerous sources to numerous
destinations such that they also cross the link [107].

System model Same as ACC, ACC-Turbo runs on the switch that gives
access to the critical link. This switch can be, e.g., an edge-router at an
ISP or IXP, with a bigger input capacity than the output link’s bandwidth.
ACC-Turbo analyzes all traffic entering the switch (including attack traffic)
and processes each packet individually. We consider that ACC-Turbo only
looks at the packet headers, and it performs limited computations. (This
is imposed by the fact that we want ACC-Turbo to run at line rate on
programmable switches [28]).

108 acc-turbo : in-network denial-of-service defense

In Out
Online

Clustering
(§ 5.4)

ACC-Turbo Agent
Cluster

Statistics

Programmable Scheduling (§ 5.5)

Scheduling Policy
Data Plane

Control Plane

Figure 5.4: ACC-Turbo architecture.

5.3.2 ACC-Turbo design

ACC-Turbo is a switch-native aggregate-based congestion control mecha-
nism that mitigate pulse-wave DDoS attacks on programmable switches. It
consists of an online-clustering module that runs entirely in the data plane
and a programmable-scheduling module that runs in both the control plane
and the data plane (see Fig. 5.4). With this hybrid design, ACC-Turbo bal-
ances the need for fast reaction (by running the inference process in the data
plane) and accuracy (by dedicating most data-plane resources to inference
while offloading the least time-sensitive parts to the control plane).

The online-clustering module extracts a set of features from the headers
of arriving packets and uses them to cluster similar packets together. It
runs in the data plane, processing all packets at line rate. It also runs
continuously, regardless of whether there is congestion, eliminating the
need for a threshold-based activation. Running continuously also allows
ACC-Turbo to anticipate its inference decisions, speeding up reaction time.

The programmable-scheduling module involves both the control and
the data plane. The control plane periodically polls information about the
extracted clusters, including statistics about the clusters and their exact
arrival rates. Then, it uses this information to assess the probability that
each cluster contains attack traffic, and derives a scheduling policy for
each cluster. The scheduling policies aim at deprioritizing clusters with
a higher probability of belonging to an attack. ACC-Turbo finally deploys
these policies to the data plane and applies them to incoming packets.

5.4 traffic-aggregate inference 109

By using programmable scheduling, ACC-Turbo adapts to traffic vari-
ations at a per-packet granularity and rapidly reacts to attack changes.
Further, programmable scheduling enables ACC-Turbo to run continuously,
even in the case of no attack. This is because programmable scheduling
does not hurt traffic: it only drops packets in case of severe congestion
(being transparent otherwise) and starts by those with higher chances of
being part of an attack.

5.4 traffic-aggregate inference

We now describe the theoretical basis behind ACC-Turbo’s inference compo-
nent. First, we phrase the problem formally and propose a practical solution
based on online clustering (§5.4.1). Second, we introduce the design de-
cisions that make ACC-Turbo implementable in existing programmable
switches (§5.4.2). The resulting clustering algorithm can be found in alg. 4.

5.4.1 Problem definition

Let us define a packet p as a set of features F , where each feature corre-
sponds to a field from the packet header (e.g., sport, dport, ip.ttl, ip.proto).
For each feature f ∈ F , packet p has a specific value associated: p f . We
distinguish two types of features: ordinal features, for which closer prox-
imity between their values implies stronger similarity (e.g., ip.src, ip.dst,
ip.len, ip.ttl), and nominal features, for which closer values do not necessarily
imply similarity (e.g., sport, dport, ip.proto).

Let us define an aggregate a as the same set of features F . For each
ordinal feature f , the aggregate a has a range of values associated: f (a) =
[min f (a), max f (a)]. For each nominal feature f , aggregate a has a set of dis-
crete values associated f (a) = {min f (a), ..., max f (a)}. With this definition,
aggregate a represents all the packets with feature values included in its
ranges and sets.

Objective At the high-level, given a set of incoming packets, our goal
is to infer a set of aggregates that represent all the observed packets as
precisely as possible. We need to limit the number of aggregates to infer
by a parameter, |A|. Otherwise, one could list each packet as a separate
aggregate and obtain perfect precision.

110 acc-turbo : in-network denial-of-service defense

Definition 5.1 (Aggregate-inference problem). Let δ f (a) be the cost of an
aggregate a, for feature f , which measures the number of values that it represents.
For ordinal features, δ f (a) = max f (a)−min f (a). For nominal features, δ f (a) =
| f (a)| (i.e., the number of values in the set). Let δ(a) = ∏ f∈F δ f (a) be the cost
of the entire aggregate, as the product of each individual feature cost. For a given
feature f , a set of packets P , and a limit on the number of inferred aggregates (|A|),
find the set of aggregates A∗ = a1, ...ak′(k′ ≤ |A|) that represent P and minimize
δ f (A∗) = ∑a∈A∗ δ f (a).

The presented problem is equivalent to the intent-inference problem
in [108], which is NP-hard. As such, we propose a heuristic solution based
on online clustering. Our solution aims at approximating the optimal result
while enabling per-packet processing. The cost function in Def. 5.1 estimates
the number of different packets that a represents, but it is also a measure of
similarity of the packets in a. Indeed, packets that can be represented in a
narrow aggregate have higher similarity than those which require a broader
aggregate. With this intuition, we build an online-clustering algorithm that
groups similar packets by minimizing the cost in Def. 5.1.

Definition 5.2 (Online-clustering framework [109]). For a sequence of points
p in P , maintain a collection of |C| clusters such that, when each input point p is
presented, either it is assigned to one of the current clusters or it starts off a new
cluster while two existing clusters are merged into one.

The online-clustering framework is characterized by an endless stream
of data, where each data sample (i.e., packet) is seen only once: it arrives,
is processed, and it departs, never to return. As such, the algorithm must
take an irrevocable action after the arrival of each point [110]. Note the
difference to the streaming case, where the job is finite, and the algorithm
can pass again through the data to fine-tune the clustering result [111, 112].

5.4.2 Design decisions

The proposed framework allows three design decisions: the number of
clustering possibilities that should be evaluated at each iteration, the type of
information that should be stored about each cluster, and the distance that
should be used to assess the clustering decisions. We make these decisions
with the goal of maximizing performance while staying within the resource
constraints of existing data planes (to achieve an in-network design).

5.4 traffic-aggregate inference 111

IP src

IP dst

Range-based

Center-basedx

IP src

IP dst

Euclidean

Manhattan

Anime
x

x

x

x

Figure 5.5: Cluster representations and distances.

Clustering search (fast vs. exhaustive)

When a new packet arrives, the online-clustering algorithm can either: (i)
merge the new packet to its closest cluster or (ii) merge two existing clusters
and create a new cluster for the new packet.

[✓] Fast search If the clustering algorithm only supports step (i), we call
it fast. This approach follows a linear search and requires only |C| distance
computations: one for each existing cluster. ACC-Turbo relies on this type
of search because it can be implemented on programmable data planes.

[X] Exhaustive search If the clustering algorithm supports steps (i) and (ii),
we call it exhaustive. This approach follows a quadratic search and requires
(|C|2) additional distance computations. For a given clustering decision, the
exhaustive approach outperforms since its search space includes (but is not
limited to) the search space of the fast approach. However, the exhaustive
approach is not implementable at line-rate in existing programmable data
planes: it requires accessing multiple times each cluster’s information, while
registers in today’s pipelines can only be accessed once per packet.

Cluster representation (ranges vs. center)

A naive way to represent a cluster is as a mere collection of packets. This is,
keeping track of all the packets and their respective feature values. Such
representation is clearly not practical since it does not scale. Therefore, we
study two alternative cluster representations.

[X] Center-based representation We can represent clusters by just a single
point (e.g., the center of the cluster). The advantage of this representation is
that the distance computation is simple, and centers can be easily updated

112 acc-turbo : in-network denial-of-service defense

following some pre-defined learning rate [113]. However, we lose a lot of
information, such as how big the cluster is or which packets does it contain,
which is useful for cluster assessment and traceability (cf. §5.10).

[✓] Range-based representation Following the problem formulation in
§5.4.1, ACC-Turbo represents each cluster c with a range of values for
each ordinal feature [min f (c), max f (c)], and a set of discrete unique val-
ues for each nominal feature {min f (c), ..., max f (c)}. Ranges (resp. sets)
represent the feature values of packets in a cluster (Fig. 5.5). This rep-
resentation preserves information about the cluster sizes, and simplifies
interpretability by providing the exact mapping of packets to clusters. Fur-
ther, ranges and sets are easy to compute and update, which facilitates its
implementation on programmable data planes. For instance, the ranges
of a new cluster that merges two existing clusters ci and cj for feature f
are: [min(min f (ci), min f (cj)), max(max f (ci), max f (cj))]. Sets can be imple-
mented as admission lists, using bloom-filters (cf. §5.6).

The distance function

We first introduce two distance functions for reference, and then derive the
distance function that we use in ACC-Turbo. For the sake of simplicity, we
illustrate the case in which we only consider ordinal features.

[X] Anime distance [108] The cost function in Def.5.1 can be translated to
the online-clustering framework as:

δAnime(C) = ∑
ci∈C

δ(ci) = ∑
ci∈C

(∏
f∈F

max f (ci)−min f (ci)) (5.1)

This cost function sums the cost of each individual cluster, which accounts
for the number of packets that the cluster represents, and estimates the
similarity across packets in the cluster. We now derive a distance function
that can be used to assess clustering decisions while trying to minimize
this cost. Assuming a range-based cluster representation, we define the
distance between clusters ci and cj, δ(ci, cj), as the amount of increase in
cost produced by merging the two clusters, compared to the total cost of the
two clusters if they are not merged: δ(ci, cj) = δ(ci ∪ cj)− (δ(ci) + δ(cj)).

The main drawback of the Anime distance is the size of its output space.
We can measure it as the product of the maximum ranges for each feature.
For instance, the maximum cost for the following features and sizes {ip.len
(16b), ip.id (16b), ip.f_offset (13b), ip.ttl (8b), ip.proto (8b), ip.src (32b), ip.dst

5.4 traffic-aggregate inference 113

(32b), sport (16b), dport (16b)} is 2157. Data structures in existing data planes
can store blocks of maximum 64 bits, which cannot represent such cost.

[X] Euclidean distance Alternatively, we can derive a cost function from
the broadly-used Euclidean distance [113]:

δ Euclid.(C) = ∑
ci∈C

δ′(ci) = ∑
ci∈C

(
∑
f∈F

∑
p∈ci

∥p f − r f (ci)∥2

)
, (5.2)

where r f (ci) is the representative of cluster ci for feature f . In this case, the
output-space size is much smaller. For the same example, the maximum
cost can be represented with less than 20 bits. However, computing the
Euclidean distance involves square and root operations, which are not
straightforward for existing data planes.

[✓] Manhattan distance In ACC-Turbo, we use an alternative distance
metric that gathers the benefits of both. Starting from the Anime distance
and trying to reduce the size of its output space, we substitute the product of
all the individual feature distances by a summation. With this modification,
the overall cost function to be minimized can be written as:

δ Manh.(C) = ∑
ci∈C

δ′′(ci) = ∑
ci∈C

(∑
f∈F

max f (ci)−min f (ci)) (5.3)

The resulting distance function to compare a new packet p with one of the
clusters, ci, can be written as: δ(p, ci) = δ(p ∪ ci)− (δ(p) + δ(ci)). We know
that δ(p) = 1 will have a fixed value, so it will not impact the comparison.
First, δ(p ∪ ci) = ∑ f∈F δ f (p ∪ ci), where:

δ f (p ∪ ci) =

max f (ci)− p f , if p f < min f (ci),

p f −min f (ci), if p f > max f (ci),

max f (ci)−min f (ci), otherwise.

(5.4)

Second, we can write δ(ci) = ∑ f∈F δ f (ci), where δ f (ci) = [max f (ci) −
min f (ci)]. Finally, δ(p, ci) ≈ δ(p ∪ ci)− δ(ci) = ∑ f∈F [δ f (p ∪ ci)− δ f (ci)] =

∑ f∈F δ f (p, ci), where:

δ f (p, ci) =

min f (ci)− p f , if p f < min f (ci),

p f −max f (ci), if p f > max f (ci),

0, otherwise.

(5.5)

114 acc-turbo : in-network denial-of-service defense

What results from simplifying the Anime distance into a one-dimensional
space is the Manhattan distance from the packet to its closest point of the
cluster. For a single dimension (i.e., feature), the Manhattan distance and
the Anime distance are equivalent. For higher dimensions, the Manhattan
distance compresses the output space. As such, it loses information with
respect to the original Anime distance. On the other hand, it is easier to
compute. Further, it generates outputs in the linear space (as we have sums
instead of products), becoming implementable in existing data planes.

Algorithm 4 ACC-Turbo Clustering Algorithm
Require: p: New packet, min, max: Initial ranges

1: procedure Clustering

2: for all p: incoming packet do
3: for all ci ∈ C do
4: d(p, ci)← ComputeDistance(p, ci)
5: end for
6: end for
7: cselected ← c0 ▷ Initialize selected cluster
8: dmin ← d(p, c0) ▷ Initialize min. distance
9: for all ci ∈ C, i ̸= 0 do

10: if d(p, ci) < dmin then
11: dmin ← d(p, ci)
12: cselected ← ci ▷ Select cluster
13: end if
14: end for
15: if d(p, cselected) > 0 then
16: min, max← UpdateCluster(p, cselected)
17: end if
18: end procedure

5.4 traffic-aggregate inference 115

1: function ComputeDistance(p, ci)
2: d(p, ci)← 0 ▷ Initialize distance
3: for f ∈ F do ▷ Iterate over all features
4: d f (p, ci)← 0
5: if f is ordinal then
6: if p f < min f (ci) then
7: d f (p, ci)← min f (ci)− p f
8: end if
9: if p f > max f (ci) then

10: d f (p, ci)← p f −max f (ci)
11: end if
12: d(p, ci) += d f (p, ci) ▷ Aggregate distances
13: else
14: if p f ̸∈ f (ci) then
15: d f (p, ci)← 1
16: end if
17: end if
18: end for
19: return d(p, ci)
20: end function
21:

22: function UpdateCluster(p, cselected)
23: for f ∈ F do ▷ Iterate over all features
24: if f is ordinal then ▷ Update ranges
25: if p f < min f (cselected) then
26: min f (cselected)← p f
27: end if
28: if p f > max f (cselected) then
29: max f (cselected)← p f
30: end if
31: else ▷ Update feature-value set
32: if p f ̸∈ f (cselected) then
33: f (cselected) = f (cselected) ∪ p f
34: end if
35: end if
36: end for
37: return min, max
38: end function

116 acc-turbo : in-network denial-of-service defense

5.5 controlling aggregates

We now describe how ACC-Turbo uses programmable scheduling to mitigate
attacks. First, we introduce the programmable-scheduling design space
(§5.5.1) and then, ACC-Turbo’s scheduler (§5.5.2).

5.5.1 Programmable-scheduling design space

Programming a scheduler consists in defining the order in which it should
drain packets from a given buffer. This is done by tagging each packet with
a rank that indicates the priority with which it should be drained.2 These
ranks are then processed by a (programmable) scheduler that dequeues the
packets trying to follow the order specified [1, 20, 41].

Ranking algorithms for pulse-wave attacks From our definition in §5.4, a
ranking algorithm to mitigate pulse-wave attacks should deprioritize aggre-
gates of high bandwidth and high packet similarity. A number of ranking al-
gorithms can be proposed with this criteria. For example, rank(p) = th.(ci),
rank(p) = num.packets(ci), and rank(p) = th.(ci)/size(ci) deprioritize
packets by throughput, packet rate, and a combination between throughput
and cluster size, respectively. These algorithms can be easily computed with
the available data-plane resources. Aggregate rates can be obtained from
packet counters, and packet similarity, from cluster sizes (cf. §5.4).

5.5.2 Scheduling algorithm

To use the proposed ranking algorithms for pulse-wave DDoS defense today,
we need to make them fit into the limited resources of existing data planes.
This is hard for three reasons. First, these resources need to be shared with
ACC-Turbo’s online-clustering module, which is resource exhaustive (e.g., 12

stages for 4 clusters and 4 features (§5.6)). Second, existing programmable
switches do not support schedulers able to process ranks, forcing us to
“build” our own. While it is possible to approximate this scheduling logic
using priority queues [1, 41], doing so requires additional resources (e.g.,
one stage per priority queue [1]). Third, the clustering and scheduling

2 Generally, a lower rank indicates a higher priority.

5.6 implementation 117

modules must operate sequentially since the ranking algorithm requires
the clustering results.

Design We build a programmable scheduler on top of priority queues and
offload the rank computation and the queue mapping to the control plane.
Specifically, the control plane periodically (i) polls information about the
extracted clusters from the data plane, (ii) assesses clusters’ maliciousness
and maps them to a priority queue, and (iii) deploys this mapping into the
data plane such that future packets of each cluster can be scheduled accord-
ingly. This design dedicates all the data-plane resources to the inference
process, maximizing its accuracy and preserving line-rate processing.

5.6 implementation

We implement ACC-Turbo in P416 [28] on Intel Tofino Wedge 100BF-32X [21],
with 2484 lines of code. Our prototype uses 12 stages and supports 4 features
and 4 clusters. For each incoming packet, ACC-Turbo computes its distance
to each cluster, selects the closest cluster, and enqueues the packet with the
selected cluster’s priority.

Cluster selection For each cluster c, we store the minimum and maximum
values of its ordinal-feature’s ranges [min f (c), max f (c)] using registers. We
store its nominal-feature’s sets using an admission list, implemented as a
bloom filter (cf. §5.4).

For each arriving packet, we compute its distance to each cluster by com-
puting all the per-cluster per-feature distances, and aggregating them per
cluster. For ordinal features, we compute the per-cluster per-feature distances
by, first, accessing the register containing min f (c), and checking if the packet
feature, p f , is below the stored value. If that is the case, we set the distance
to d f (p, c) = min f (c)− p f within the register’s ALU. If not, we access the
register containing max f (c) and set the distance to d f (p, c) = p f −max f (c)
if p f > max f (c). Since the two registers are accessed sequentially, this takes
two stages. However, computation for different cluster-feature pairs can be
parallelized. For nominal features, we set the distance to 1 if the bloom-filter
entry matched by p f is empty. This takes one stage.

We aggregate the per-cluster per-feature distances into per-cluster dis-
tances by progressively summing two distances at each stage using non-
stateful ALUs. This requires log2|F | stages, being |F | the number of fea-
tures. Finally, we find the minimum distance by progressively comparing

118 acc-turbo : in-network denial-of-service defense

two distances at each stage also using non-stateful ALUs. This requires
log2|C| stages, being |C| the number of clusters. The distance-computation
and distance-aggregation operations can also be parallelized to reduce the
number of stages.

Cluster update When the minimum distance is not zero, we know that
the packet has fallen outside of the selected cluster’s coverage. In that case,
we need to update the cluster’s ranges and sets to accommodate the new
packet. We do so by using resubmission.

Queue selection We use a match-action table, populated by the controller, to
map the packet into a priority queue based on the packet’s selected cluster.
The controller defines the cluster priorities from cluster statistics polled
from the data plane (i.e., register entries and packet counters) following the
scheduling policy in §5.5.

Resource requirements Our implementation (in Tofino 1 [21]) supports a
limited number of clusters and features due to Tofino’s limited number of
stages. Newer programmable switches (e.g., Tofino 2 and 3 [114, 115]) have
a higher number of stages, allowing more-performant implementations
with more clusters and features.

5.7 hardware-based evaluation

We evaluate our hardware implementation of ACC-Turbo on Tofino. First, we
evaluate ACC-Turbo’s performance under a pulse-wave DDoS attack (§5.7.1).
Second, we compare ACC-Turbo’s performance to the one of Jaqen [98], a
state-of-the-art DDoS defense (§5.7.2).

5.7.1 ACC-Turbo’s performance

We generate traffic between two servers, connected by a Tofino switch, using
interfaces of 100 Gbps (sender→Tofino) and 10 Gbps (Tofino→receiver).
As in previous work [91, 98], we replay CAIDA traces as background
traffic [116] and add attack traffic on top using MoonGen [34]. The pulse-
wave DDoS attack that we generate is composed of four UDP-flood pulses,
which have a duration of 10 seconds each and are followed by a 10-second
interleave. Each pulse targets a different IP address within a common
subnet and a different port. At its peak, the traffic reaches 40.789 Gbps. We

5.7 hardware-based evaluation 119

0
2
4
6
8

10

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Output Attack Output Benign

(a) FIFO

0
2
4
6
8

10

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Output Attack Output Benign

(b) ACC-Turbo

Figure 5.6: Mitigation of a pulse-wave DDoS attack.

configure ACC-Turbo to use 4 clusters and to use the last two bytes of the IP
destination address, the source port, and the destination port as clustering
features. We use a throughput-based ranking algorithm and update the
cluster priorities at the controller’s maximum speed.

Recovery rate of background traffic Fig. 5.6a shows the traffic throughput
evolution under no protection. The attack severely impacts the background
traffic, with a throughput reduction of ≈ 61%. Note that we are replaying
traffic traces and do not see the impact of end-host congestion control. With
the effect of congestion control, performance would worsen even further.
When we use ACC-Turbo, as soon as it infers the attack and deprioritizes its
traffic, background traffic fully recovers its original throughput (Fig. 5.6b).

Reaction time Fig. 5.6b illustrates the range of possible reaction times in
ACC-Turbo. While ACC-Turbo reacts to the first pulse almost immediately,
it takes up to ≈ 1s to react to the last two pulses. This reaction time is the
time it takes for the control plane to poll the throughput of each cluster,
update their priorities, and deploy them to the data plane. In our testbed,
with a non-optimized Python controller, this takes several milliseconds.

5.7.2 Comparison to the state-of-the-art DDoS-mitigation technique

We compare ACC-Turbo to Jaqen [98], the state-of-the-art DDoS defense.
Jaqen uses sketch-based signatures to detect attacks and rate-limiting/dropping
to mitigate them (cf. Table 5.3). With respect to Jaqen, we show that ACC-
Turbo . . .

1. . . . is more generic (§5.7.2), since it infers attacks agnostically, and not
relying on pre-configured signatures.

120 acc-turbo : in-network denial-of-service defense

Detection Reaction Mitigation

ACC-Turbo Clustering Always-on Programmable
scheduling

Jaqen [98] Signature
(sketches)

Threshold-
based

Rate limit /
Drop

Table 5.3: ACC-Turbo’s techniques vs. Jaqen’s.

2. . . . achieves faster reaction time (§5.7.2), since it can mitigate attacks
without reprogramming the switch.

3. . . . does not suffer from the “threshold-based activation” vulnerability
(§5.7.2), since it runs continuously on all traffic.

We use the same setup as in the previous section but with the four
bytes of the destination IP address as features. We replay CAIDA traces
as background traffic at twice their speed (reaching ≈ 7 Gbps) during 100

seconds and run attacks on top using MoonGen [34]. We generate attacks
at maximum capacity, reaching up to ≈ 99 Gbps.

Genericity

We evaluate genericity by analyzing Jaqen’s and ACC-Turbo’s robustness to
attack-traffic variations. Specifically, we consider a UDP-flood attack, which
initially consists of a single UDP flow (all the packets share the 5-tuple). We
then modify the attack traffic by using: (i) UDP carpet bombing [117–119]
(i.e., the attack targets a /24 destination prefix instead of a single IP); and
(ii) UDP source spoofing. We configure Jaqen with a sketch that detects
heavy hitters either by monitoring the 5-tuple (Jaqen†) or the source IP
(Jaqen‡). We measure the percentage of benign packets dropped and show
the results in Table 5.4.

We observe that Jaqen is only effective when the right defense is deployed,
but its performance drastically decreases as soon as the attack pattern varies.
Instead, ACC-Turbo performs well generally, being more robust to attack
variations. This is expected: while ACC-Turbo infers attacks without any
initial assumption of the attack characteristics, Jaqen is signature-based and
relies on pre-configured defenses for a fixed subset of attacks.

5.7 hardware-based evaluation 121

Benign packet drops (%) FIFO Jaqen† Jaqen‡ ACC-Turbo

No Attack 0.00 2.50 3.68 0.00

Single Flow 89.85 2.67 3.95 14.79

Carpet Bombing 89.88 73.19 3.95 19.98

Source Spoofing 89.87 88.16 88.51 14.80

Table 5.4: Mitigation efficiency under attack variations.

Reaction time

We evaluate ACC-Turbo’s and Jaqen’s reaction time, defined as the time
since they see the first attack packet until they start mitigating the attack.
For ACC-Turbo, the reaction time is the time it takes for the control plane
to poll the cluster statistics, update the cluster priorities, and deploy them
to the data plane. For Jaqen, it is the time it needs to: detect the attack,
compute the right mitigation, orchestrate the network to reroute legitimate
traffic, replicate the switch state to the controller, and reprogram the switch
with the right mitigation and replicated state.

We measure ACC-Turbo’s and Jaqen’s reaction times. For Jaqen, we con-
sider two cases: (i) when it needs to deploy a new mitigation (worst case);
and (ii) when the right mitigation is already in the switch (best case). Our
results show that ACC-Turbo reacts at least 11× (resp. 10×) faster than
Jaqen in the first (resp. second) case.

ACC-Turbo’s reaction time We generate a simple UDP-flood attack (all
packets sharing the 5-tuple) on top of the CAIDA trace (Fig. 5.7a), and
measure the time it takes for ACC-Turbo to react. As depicted in Fig. 5.7b,
ACC-Turbo takes ≈ 1s to react. This is the time required by the (here,
unoptimized) control plane to poll the cluster statistics, and deploy the
updated priorities to the data plane.

Jaqen’s reaction time (defense not deployed) We measure how fast can
Jaqen deploy a mitigation which is not already in the switch. To do so, we
measure how long it takes for a hardware switch to swap between two
(trivial) programs, which simply rewrite the source IP of all packets. We
execute the first program for one minute before instructing the switch to
swap to the second program, which has been pre-compiled and cached.
We send traffic continuously and measure its downtime. We repeat the

122 acc-turbo : in-network denial-of-service defense

0
2
4
6
8

10

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Output Attack Output Benign

(a) FIFO

0
2
4
6
8

10

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Output Attack Output Benign

(b) ACC-Turbo

0

2

4

6

8

10

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

G
bp

s)

Time (s)

Program 1 Program 2

(c) Reprogramming time

0
2
4
6
8

10

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Output Attack Output Benign

(d) Jaqen

Figure 5.7: Reaction-time evaluation.

experiment 10 times. On average, it takes 11.5 seconds for Jaqen to deploy a
new mitigation. This is 11× slower than ACC-Turbo’s reaction time. Fig. 5.7c
shows the result for one of the iterations.

Jaqen’s reaction time (defense already deployed) If the mitigation module
is already loaded, Jaqen’s reaction time is the time to detect the attack
from the control plane and to deploy a dropping rule to the data plane.
We measure this reaction time when Jaqen is configured with the simplest
defense (to ensure it is as fast as possible): a sketch that monitors the number
of attack packets and a controller that reads it periodically, activating a
dropping action when an attack is detected. We read the sketch entries at
maximum speed and optimize the threshold value for performance.

As shown in Fig. 5.7d, Jaqen’s reaction time is ≈ 10 seconds. This is still
10× slower than ACC-Turbo. This is the time required by the controller to
read the sketch and deploy the drop action and the time it takes for the
threshold to be reached–not once, but twice–since Jaqen’s only considers
attacks when detected in two consecutive time windows.

Jaqen’s slow reaction time, of ≈ 10 seconds, even in the ideal case, makes
it vulnerable to pulse-wave DDoS attacks.

5.8 simulation-based evaluation 123

Threshold-configuration sensitivity

We analyze how sensitive Jaqen is to the threshold-based defense activation
vulnerability introduced in §5.2.2. To that end, we take Jaqen’s simplest
possible defense: the 5-tuple heavy hitter in §5.7.2 (Jaqen†). Such defense
relies on two parameters: the threshold over which traffic is considered to be
an attack and the periodicity at which this threshold is checked. We analyze
the mitigation efficiency when the two parameters are modified, in the case
of a simple UDP-flood attack on top of a CAIDA trace. We measure the
percentage of benign traffic dropped and compare the results to the case in
which no-defense (i.e., FIFO), and ACC-Turbo, are used.

Fig. 5.8a illustrates Jaqen’s high sensitivity to threshold configuration.
Slight variations in the threshold value (e.g., from 1M packets to 7M pack-
ets) can result in a drastic increase of benign-packet drops (from ≈ 10%
to ≈ 75%). This is expected and aligned with our arguments in §5.2.2.
Indeed, the best threshold value depends on the dynamics of both attack
and benign traffic, which continuously change over time. As also expected,
too-low thresholds can result even worse than not having any defense. This
is because they may drop benign traffic even in case of no congestion.

Fig. 5.8b shows how the periodicity at which the threshold is checked can
further impact a certain threshold’s performance. For example, a threshold
of 104 packets, which outperforms at the controller’s maximum periodicity,
performs very poorly if the periodicity decreases. At the same time, a
bad-performing threshold at maximum periodicity (e.g., 107 packets) can
perform well if the controller’s periodicity decreases.

ACC-Turbo avoids the threshold-based vulnerability by running continu-
ously on all traffic. Further, ACC-Turbo does not perform binary assessments
on whether a traffic aggregate is malicious or not based on its absolute
traffic rate. Instead, it performs finer-grained assessments that deprioritize
traffic aggregates based on their relative rates (with respect to other ag-
gregates) and their cluster statistics. As a result, even though ACC-Turbo’s
performance is not as good as Jaqen’s when Jaqen is configured optimally,
it manages to outperform when Jaqen is not perfectly tuned.

5.8 simulation-based evaluation

Given the limitations of our Tofino prototype (§5.6), we extend the eval-
uation of ACC-Turbo by using packet-level simulations in Netbench [26,

124 acc-turbo : in-network denial-of-service defense

0

25

50

75

100

1 10 10
2
10
3
10
4
10
5
10
6
3·1
06
5·1
06
7·1
06
10
7
10
8Be

ni
gn
-p
ac
ke
td
ro
ps

(%
)

Dropping threshold (packets)

ACC-Turbo
FIFO

Jaqen

(a) Threshold setting

0

25

50

75

100

0 5 10 15 20Be
ni
gn
-p
ac
ke
td
ro
ps

(%
)

Bloom filter inter-reset time (s)

ACC-Turbo
FIFO

Jaqen Th=107 pks
Jaqen Th=104 pks

(b) Speed

Figure 5.8: Threshold-configuration sensitivity.

27]. We evaluate the performance of ACC-Turbo when it schedules a mix
of benign traffic and DDoS attacks. We analyze the impact of its different
design decisions (§5.4) and study the performance of more-complete im-
plementations of ACC-Turbo which are not implementable in Tofino1 but
we expect to be implementable in the near future (e.g., by using Tofino2 or
Tofino3 [114, 115]). We first characterize the clustering strategy (§5.8.1) and
then, the scheduling scheme (§5.8.2).

Methodology We simulate an ACC-Turbo-enabled switch that processes one
day of traffic in which a series of DDoS attacks (or a single morphing attack)
is received. We do so by feeding the CICDDoS-2019 trace [120], which
contains a sequence of DDoS attacks, into a simulated switch running ACC-
Turbo. By default, we configure ACC-Turbo with 10 clusters, and use each
byte of the ip.src and ip.dst, sport, dport, ip.ttl, and ip.len as features. We
adjust the capacity of the output link to various congestion levels.

Overall performance Even though ACC-Turbo’s performance depends on
the characteristics of benign and attack traffic, we now illustrate its practi-
cality by evaluating it on a realistic dataset covering a wide range of attack
vectors. For all attacks, ACC-Turbo’s online-clustering algorithm manages
to distinguish packets from attack and benign distributions (achieving clus-
ter’s purity of ≈ 90%), with as few as 10 clusters. ACC-Turbo’s performance
is better for well-defined traffic aggregates. For reflection attacks with high
packet similarity, ACC-Turbo manages to save up to 29% more of benign
traffic than FIFO queues, just 5.13% away from an ideal scheduler with full
attack knowledge (cf. Fig. 5.11b, at 50Mbps).

5.8 simulation-based evaluation 125

50
60
70
80
90

100

NTP
DNS

MSSQL
NetBIOS

SNMP
SSDP

TFTP
UDP

UDPLag

Pu
rit

y
(%

)

Attack Vectors

Reflection-based
Exploitation-based

(a) Attack split

0
20
40
60
80

100

daddr
saddr

sport
dport

ttl len f.off.
id protoC

lu
st

er
in

g
qu

al
ity

Features

Purity (%)
Recall benign (%)

Recall malicious (%)

(b) Feature split

Figure 5.9: Performance by attack type and features.

5.8.1 Characterizing the clustering strategy

We evaluate ACC-Turbo’s inference by measuring the purity and recall of
the extracted clusters. These metrics measure the accuracy of the clustering
algorithm in mapping packets from different distributions into distinct
clusters. We compute purity by (i) labeling each cluster as either majority-
benign or majority-malicious, based on the number of clustered packets
of each type, (ii) counting the number of packets that match the cluster’s
label, and (iii) dividing it by the total number of packets [121]. We compute
recall of benign (resp. malicious) packets as the percentage of benign (resp.
malicious) packets mapped into majority-benign (resp. -malicious) clusters.
We compute the metrics every one minute and average the result. We only
count periods with both attack and benign traffic.

Feature selection and attack vectors Fig. 5.9a shows the clustering perfor-
mance across attack vectors. In all cases, purity is above 87%. The clustering
performance is strongly related to the variance of the attack features. For
example, reflection-based attacks achieve, on average, 5.4% better purity
than exploitation-based attacks. Within reflection-based attacks, MSSQL
and SSDP, which have higher feature-value variance, perform worst (e.g.,
MSSQL uses multiple source ports, while NTP or DNS use a single port).

Fig. 5.9b shows the performance of clustering on individual features. For
this particular dataset, IP addresses and source port are good identifiers of
malicious traffic. In contrast, fields like IP protocol are less useful as attacks
use both UDP and TCP. While the absolute values are tied to the trace
characteristics, the split illustrates the different performance levels that ACC-
Turbo can achieve. While “narrow” attacks achieve good performance if we
look at the right features, their performance drastically drops as soon as
attacks become diverse or features do not provide a clear signature.

126 acc-turbo : in-network denial-of-service defense

50
75

100

2 4 6 8 10

Pu
rit

y
(%

)

Num Clusters

Anime Exh.
Manh. Exh.
Eucl. Exh.

Anime Fast

* Manh. Fast
Eucl. Fast

Eucl. Fast In.
Off. KMeans

(a) Purity (%)

50
75

100

2 4 6 8 10Re
ca

ll
Be

ni
gn

 (%
)

Num Clusters

Anime Exh.
Manh. Exh.
Eucl. Exh.

Anime Fast

* Manh. Fast
Eucl. Fast

Eucl. Fast In.
Off. KMeans

(b) Recall benign (%)

Figure 5.10: Performance of clustering strategies.

Number of clusters Fig. 5.10 shows the performance of different clustering
strategies when the number of clusters varies from 2 to 10. First, as expected
(cf. §5.4), a higher number of clusters provides better purity and recall.3

While selecting the optimal number of clusters is typically a challenge,
in ACC-Turbo it is imposed by the hardware constraints (§5.6). Second,
increasing the number of clusters is more beneficial for fewer clusters (e.g.,
the purity in ACC-Turbo improves by 4% when we move from 2 clusters to
4, while it only improves 1% when we move from 8 to 10). Since ACC-Turbo
is designed to run in an environment where the number of clusters is
limited, it builds upon this insight and dedicates all data plane resources to
maximize the number of clusters (running the non-inference operations in
the control plane).

Clustering search: fast vs. exhaustive As expected (cf. §5.4.2), we observe
that exhaustive approaches generally outperform their fast versions, even
though the difference gets smaller as the number of clusters increases. This
is especially clear in the Anime and Manhattan approaches, which use
range-based representations and have more information to assess clustering
decisions (e.g., 93.24% to 98.09% purity increase for Anime with 10 clusters).

Cluster representations and distances Overall, center-based distances “suf-
fer” less when downgraded from exhaustive to fast (e.g., just 0.79% purity
decrease with 10 clusters). There are two reasons for that. First, since they
carry little information about clusters, the potential improvement of check-
ing more combinations is limited. Second, range-based approaches are

3 A naive way to achieve perfect purity is to have as many clusters as packets, mapping each
packet to its own cluster. From a scheduling perspective, however, this approach has no value
since clusters do not give any information about the maliciousness of the packets contained.

5.8 simulation-based evaluation 127

more sensitive to updates since they directly include the new points as they
are analyzed. In center-based approaches, we just move the center in the
direction of the new data point using some learning rate.

Fast vs. offline and baselines We compare the performance of ACC-Turbo
to the one of offline k-means with unlimited resources. In all cases, ACC-
Turbo is very close to the offline case (e.g., 4.19% of difference in purity for 10

clusters, cf. Fig. 5.10). We also study the performance of a hybrid approach,
which periodically computes the cluster centers offline and updates them
online with the new packets. While the hybrid approach outperforms, the
improvement is not substantial enough to justify its added complexity.

5.8.2 Characterizing the scheduling scheme

Finally, we study ACC-Turbo’s scheduling performance. First, we evaluate
the schedulers in §5.5, analyzing how often they prioritize benign traffic
over malicious traffic. We measure a score, defined as the percentage of
one-second intervals in the simulation where the average priority given
to benign traffic is higher than the one given to malicious traffic. Second,
we measure the number of benign packets dropped when the trace is
scheduled by a FIFO queue, ACC-Turbo, and an ideal scheduler, which
prioritizes benign traffic. We use 10 clusters and the 10 most representative
features for the trace.

Ranking algorithms Fig. 5.11a shows the performance of the scheduling
algorithms under the two most complex reflection attacks (cf. Fig.5.9a).
While the absolute values are specific to the dataset, we see how adding
the similarity factor to the rank definition (i.e., the cluster sizes) improves
performance. This result strongly supports ACC-Turbo’s design decision of
using a range-based representation.

Bottleneck Fig. 5.11b analyzes the number of dropped packets for various
bottleneck capacities. First, we see that the ACC-Turbo version that is imple-
mentable today (i.e., Manhattan distance, fast approach) performs almost on
par with the ideal case for smaller bottlenecks. Indeed, at 50 Mbps it saves
29% more benign traffic than FIFO queues, being just 5.13% worse than
an ideal PIFO with the ground truth. Second, we compare its performance
to the one of Manhattan-exhaustive, and Anime-fast approaches. We see
how the loss in performance of today’s ACC-Turbo comes from the two

128 acc-turbo : in-network denial-of-service defense

0
50

100

MSSQL SSDP
Sc

or
e

(%
)

Attack Vectors

N.P.
Th.

N.P./Size
Th./Size

(a) Performance of different
ranking algorithms

 0
 20
 40
 60
 80

 100

0.05 0.02 0.01 0.005 0.001%
 B

en
ig

n
Pa

ck
et

s
D

ro
pp

ed

Bottleneck capacities (Gbps)

FIFO
PIFO Ideal

An. Fast Th.

* Manh. Fast Th.
* Manh. F. Th./S.

Manh. Exh.Th.

(b) Overall performance

Figure 5.11: Impact of scheduling for mitigation.

design decisions required to make it fit into existing devices: using a fast
approach and reducing the size of the distance space (§5.4). With newer pro-
grammable switches, some of which are available [114, 115], more-complete
versions of ACC-Turbo become implementable.

5.9 limitations

In this section, we discuss techniques by which attackers could try to
evade ACC-Turbo (§5.9.1), and mechanisms by which attackers could try to
weaponize ACC-Turbo to block benign traffic (§5.9.2).

5.9.1 Evading ACC-Turbo

ACC-Turbo infers attack traffic in an unsupervised fashion, looking for
unexpectedly-high rates of traffic aggregates (i.e., packets that share some
similarity). Based on this premise, an attacker willing to evade ACC-Turbo
has potentially two options: (i) trying to generate low-rate attack traffic
and/or (ii) trying to diversify attack packets.

Pulse-wave DDoS attacks are volumetric by nature (i.e., they need high
traffic rates in order to congest the target link). As such, the first option per
se is not actually viable. This only leaves the attacker one option: breaking
the packet similarity. We now discuss two granularities at which the attacker
can break packet similarity: at the packet level and at the aggregate level.

Breaking packet similarity at packet level The goal of this approach
is to make it harder for ACC-Turbo to correlate attack packets, by adding

5.9 limitations 129

randomness to one or multiple packet features. Various techniques serve this
purpose: e.g., carpet bombing or IP spoofing [117–119]. These techniques
spread the feature values of attack packets all over the space, making ACC-
Turbo unable to identify any relation among them. While ACC-Turbo is
robust to a certain degree of randomness (cf. §5.7), it can not infer attack
traffic if all the clustering features are randomized. In the worst scenario,
this approach can end up with attack packets mapped to all the clusters
and with ACC-Turbo not being able to mitigate the attack.

Since these techniques are widely used, we propose two solutions to pre-
vent them. First, network operators can pick clustering features strategically
to avoid these behaviors. For example, we can prevent carpet bombing by
clustering longer IP prefixes rather than individual destination IPs [119].
Second, operators can leverage network-monitoring tools to proactively
detect and mitigate these patterns, e.g., directly in the data plane or as a
part of the cluster’s assessment of ACC-Turbo in the control plane.

Breaking packet similarity at aggregate level This approach consists in
generating multiple low-rate attack aggregates formed by different traffic
types, such that ACC-Turbo can not identify any relation between them.
In the worst case, this attack can result in ACC-Turbo deprioritizing traffic
clusters that do not accurately represent attack traffic and not being able to
mitigate the attack.

The simplest instantiation of this attack (in number of attack vectors
required) is the one composed of |C| spread-out attack vectors, where
each vector targets a different cluster. The goal is to attack all the clusters
simultaneously, such that ACC-Turbo becomes ineffective. While possible in
theory, this attack is challenging to execute in practice. Indeed, it requires
the attacker to: (i) infer the clustering features and the ranking policy of
the victim ACC-Turbo instance, (ii) find out which are the attack vectors
that maximize their respective distance in the feature space and minimize
their probability to be deprioritized by the ranking policy, and (iii) generate
these attack vectors, while making sure that they can still reach the victim
target. Even though it may be possible to execute this attack for some
scenarios, it requires higher complexity than the needed for a conventional
DDoS attack. Further, this attack becomes harder to execute, and decreases
its effectiveness, linearly to the number of clusters. This is encouraging
given the higher number of resources available in newer generations of
programmable switches (§5.7).

130 acc-turbo : in-network denial-of-service defense

5.9.2 Weaponizing ACC-Turbo

We now discuss two attacks which are enabled by ACC-Turbo. Here, the
goal of the attacker is not to evade ACC-Turbo, but to trick it into treating
some portion of benign traffic as malicious traffic.

Swapping attack This attack aims at causing most benign (resp. malicious)
traffic to be treated as malicious (resp. benign). For that to happen, benign
traffic needs to already have a high packet similarity and a high rate. In that
case, an attacker can generate lower-rate traffic with randomized packet
headers to congest the target link while evading ACC-Turbo’s inference. In
the worst case, this attack can result in malicious traffic being prioritized
over benign traffic. This attack can be perceived as a special case of packet-
level evasion (§5.9.1) and can be defended using the same techniques.

Imitation attack This attack involves generating traffic that closely resem-
bles production traffic, with the goal of causing ACC-Turbo to deprioritize
both the attack and the victim’s traffic. Similar to the previous attack, this
approach is challenging to execute in practice. Attackers must predict the
appearance of the victim’s traffic at the time of the attack and accurately
replicate it at a high rate, at least for the features supported by ACC-Turbo.

The problem of imitation attacks (or attacks composed of indistinguish-
able flows) has been studied by previous literature in the context of link-
flooding attacks [99, 107]. Solutions involve rate-change tests or historical-
pattern analysis to shed light on whether a certain aggregate is a legitimate
service or a spoofed replica [107].

5.10 discussion

Are today’s DDoS still “aggregates”? Yes. Even though DDoS attacks
can theoretically be arbitrarily complex, most DDoS attacks today are still
formed by well-defined traffic subsets [119, 122], thus being characterizable
as “aggregates” [106].

For instance, the Mirai attack, which is probably the most famous botnet-
based attack to date, included several flooding attacks such as UDP flood,
SYN flood, ACK flood, or HTTP flood [123]. Each such attack generated
highly-similar packets [124]: for instance, all SYN-flood packets had the
same size, protocol, flags, and shared the same source IP subnets.

5.10 discussion 131

Amplification attacks, such as the NTP-based attack on Cloudflare (2014),
DNS-based attack on Google (2017), or the Memcached-based attack against
GitHub (2018), can be generally characterized by unusually-large packets
sourcing from a specific port, using the same protocol, and originating from
a common subset of IPs [125, 126].

Finally, alleged link-flooding attacks [127, 128] (cf. [107]) were also com-
posed by (i) “DNS responses of 3000 bytes and TCP reflections targeting
specific addresses of the victim IXP” [127], and (ii) “amplification vectors
such as NTP, UDP, TCP, and ICMP-floods” [128].

Can ACC-Turbo cover other attack types? While ACC-Turbo has been
designed to cover pulse-wave DDoS attacks, it can also mitigate conven-
tional DDoS attacks as long as they are volumetric and composed of clear
traffic aggregates (as we show in §5.8). On the other hand, ACC-Turbo does
not cover application-layer attacks nor low-bandwidth attacks. Since these
attacks are not volumetric, they do not generate congestion in the network
and remain unnoticed by ACC-Turbo. However, as we discuss in §5.9, ACC-
Turbo can be deployed together with complementary defenses, which may
protect against attacks that ACC-Turbo can not cover.

What is the impact of leaving ACC-Turbo always-on? Under sporadic
congestion, the possible packet reorderings produced by ACC-Turbo could
be happening without our solution as well, e.g., if the deprioritized packets
suffered from longer delays on the network. In case of sustained congestion
(not an attack), ACC-Turbo will deprioritize groups of packets with higher
rates (heavy hitters) and give more priority to less aggressive groups of
packets. The impact could be similar to a fair-queuing scheme, with the
difference that the definition of a flow is inferred dynamically.

What about reordering? Assuming that the features used are common
across all packets of a given flow, all these packets will be mapped into
the same cluster. As such, reordering can only happen when the priority
given to the flow’s cluster increases over time while there are still packets
of the same flow in the queue with the old (lower) priority. Since we update
priorities in time windows of milliseconds to seconds, potential reordering
would only impact large flows with already-high flow completion times.

What about interpretability? ACC-Turbo’s range-based clustering allows
operators to know which packets are being mapped into each cluster, as
well as the exact mapping of these clusters to the priority queues. Contrary

132 acc-turbo : in-network denial-of-service defense

to a black-box approach, an operator can access the complete information
of every action performed in real-time. An operator could further modify
the table entries in ACC-Turbo to reduce the number of priority queues to
be used to drop specific parts of traffic or treat some known-benign traffic
preferentially (e.g., by mapping it to a dedicated priority queue).

What future research do we envision? Given the limitations of ACC-Turbo,
we expect future work to tackle two main research directions. First, the
design of enhanced inference techniques, which can identify attack patterns
with higher accuracy and robustness. Second, the combination of signature-
based defenses, which outperform in detecting known attacks (§5.8), with
generic defenses like ACC-Turbo, which offer the potential to infer new
attacks. The combination of both approaches can also result beneficial in
preventing adversarial attacks to unsupervised DDoS defenses (cf. §5.9).

5.11 related work

Given the novelty of pulse-wave DDoS attacks, only a few works have
studied their mitigation [129]. Therefore, in this section, we cover some
in-network defenses for conventional DDoS attacks, which are also related
to our work. Another group of attacks, called shrew or pulsing attacks, also
leverage traffic pulses to disrupt the victim’s connectivity [130]. However,
they differ from pulse-wave DDoS attacks in that they are low-rate and
target TCP vulnerabilities.

Conventional-DDoS defenses Poseidon [91], Jaqen [98], and Ripple [99]
use programmable switches to mitigate DDoS attacks. Poseidon proposes
a system-level solution to orchestrate traffic to pre-defined defenses in
dedicated servers. Jaqen and Ripple are both signature-based and rely on
a network-wide view of attack signals to deploy pre-configured defenses.
ACC-Turbo runs autonomously in a switch (not requiring network orches-
tration nor switch reprogramming), achieves fast reaction times, and covers
unknown attacks. Bohatei [90] uses network function virtualization to adapt
the placement, scale, and the type of pre-defined defenses depending on
the detected attacks. SPIFFY [107] detects link-flooding attacks by actively
modifying the available bandwidth and analyzing the traffic reaction. Kit-
sune [104] trains an ensemble of autoencoders to identify anomalies in
network traffic. Euclid [105] uses statistical analysis to detect attacks from
the network. While these solutions achieve high accuracy, they execute

5.12 conclusions 133

drastic mitigation policies such as filtering. In contrast, ACC-Turbo uses
programmable scheduling to mitigate attacks directly from the network
which is safer and reduces collateral damage in case of misclassification.

Scheduling-based DDoS defenses DDoS-Shield [131] uses scheduling to
mitigate DDoS attacks. While ACC-Turbo faces pulse-wave DDoS attacks
from the network, DDoS-Shield targets application-layer attacks from the
end-host. In [132], a DDoS defense is proposed, using two priority queues
and assigning suspected flows to the low-priority queue. Suspected flows
are identified based on the difference in harmonic means of the arrival
rate of incoming packets. ACC-Turbo uses more priority queues to enable
finer-grained decisions and accommodates more complex DDoS attacks.

5.12 conclusions

In this chapter, we emphasized the need for in-network pulse-wave DDoS
defenses, and showcased the potential of building them by combining
unsupervised inference and programmable scheduling. We presented ACC-
Turbo, the first aggregate-based congestion control mechanism that mitigates
pulse-wave DDoS attacks by running at line rate on commodity hardware.
ACC-Turbo leverages two key insights: online clustering—to effectively
identify (possibly unknown) attack pulses, and programmable scheduling—
to safely deprioritize traffic according to its maliciousness. We implemented
ACC-Turbo in P4 and deployed it on programmable hardware. ACC-Turbo
can mitigate pulse-wave DDoS attacks in almost real-time.

6
C O N C L U S I O N A N D O U T L O O K

In this dissertation, we have developed four systems to facilitate in-network
congestion management on existing devices, showcasing its potential to
significantly enhance the performance and security of the modern Internet.
Firstly, we introduced SP-PIFO and PACKS, two frameworks designed to
adapt the PIFO abstraction to the limitations of current programmable data
planes, enabling flexible in-network congestion management on existing
hardware. Secondly, we presented QVISOR, a scheduling hypervisor aimed
at extending in-network congestion management capabilities to multi-tenant
environments like data centers and cloud networks. QVISOR allows tenants
to program their own congestion management algorithms while sharing a
set of underlying hardware, ensuring fair and effective resource allocation.
Lastly, we introduced ACC-Turbo, which showcases the power of in-network
congestion management in the context of security by effectively countering
the most sophisticated forms of denial-of-service attacks. These systems
demonstrate the advantages of in-network congestion management and
their potential to shape the future of Internet performance and security.

In Chapter §2, we introduced SP-PIFO, an implementation of in-network
congestion management on existing programmable data planes. SP-PIFO
relies on a per-packet adaptation heuristic that approximates the behavior
of a PIFO queue using widely-available priority queues without requiring
prior traffic knowledge. It dynamically adjusts the mapping between in-
coming packets and priority queues to minimize the scheduling difference
with respect to the ideal PIFO queue. We showcased SP-PIFO’s practicality
with as few as 8 priority queues, its quick reaction to traffic variations, and
its ability to run at line rate on existing hardware, on an Intel Tofino device.

In Chapter §3, we identified a limitation in SP-PIFO’s design: it only
approximates PIFO’s scheduling behavior, neglecting to simultaneously
approximate its admission control. To address this, we introduced PACKS,
an approximate PIFO scheduler that outperforms SP-PIFO by emulating
PIFO queues in both scheduling and admission. Unlike SP-PIFO, PACKS
incorporates an admission-control mechanism alongside its queue-mapping
technique. It leverages prior knowledge of the traffic distribution and queue

135

136 conclusion and outlook

occupancy levels to determine which packets to admit and how to map
them to priority queues. We demonstrated that PACKS approximates PIFO
more accurately than SP-PIFO, reducing scheduling inversions by up to 7×
and the number of packet drops by up to 60%. Both SP-PIFO and PACKS
showcase the feasibility of deploying in-network congestion management
on existing infrastructure, allowing operators to start benefiting from it.

In Chapter §4, we addressed a limitation of both SP-PIFO and PACKS:
their inability to implement multiple in-network congestion management
policies concurrently. We highlighted the necessity of supporting multi-
tenancy in programmable in-network congestion management, given the
heterogeneous nature of modern network infrastructures like data centers
and cloud environments. To tackle this challenge, we introduced QVISOR,
a framework designed to empower multiple tenants to apply their own
congestion management policies to their specific traffic subsets. Simultane-
ously, QVISOR allows operators to define how hardware resources should
be allocated among tenants. The core idea behind QVISOR is to serve as a
hypervisor, simplifying the management of the congestion-management re-
sources across multiple tenants with different objectives and requirements.

In Chapter §5, we focused on security, demonstrating the advantages
of in-network congestion management in mitigating pulse-wave denial-of-
service attacks. These attacks can evade existing defenses by exploiting
their slow convergence time. By running directly in the network, in-network
congestion management techniques can identify attack patterns in less than
a second and effectively mitigate them. We introduced ACC-Turbo, an
in-network defense mechanism that leverages online clustering to identify
sections of malicious traffic at line rate, even if they use zero-day vectors, and
programmable scheduling to safely deprioritize malicious traffic, thereby
mitigating the attacks. We showcased how ACC-Turbo effectively mitigates
sophisticated pulse-wave DDoS attacks in real-time, rapidly adapting to
attack variations, and being ten times faster than the state of the art.

6.1 future work

We see opportunities for future work in a number of areas of in-network
congestion management. In the following, we describe a subset of them.

6.1 future work 137

6.1.1 Introducing buffer-management techniques to the equation

In Chapter 2 and Chapter 3, we built two abstractions aimed at enabling
in-network congestion management on existing devices by approximating
the behaviors of a PIFO queue. SP-PIFO approximated PIFO’s scheduling
behavior and PACKS incorporated its admission behavior. In both SP-PIFO’s
and PACKS’s design, we considered a complete partitioning scheme where
each priority queue is statically provisioned with a fixed buffer size. We
see research opportunities in studying the potential benefits of other buffer
management techniques, such as dynamic thresholds or complete sharing,
some of which are supported on existing devices. A better understanding
of these techniques and their interaction with scheduling and admission
control can not only open doors to closer-to-PIFO implementations but also
help us better design in-network congestion management techniques.

6.1.2 Studying the benefits of rotating priority queues

We designed SP-PIFO and PACKS to operate on a set of strict priority
queues, each with a fixed priority. Recent works have introduced alternative
designs that rely on rotating priority queues [33, 42]. These rotating priority
queues offer increased flexibility but require more complex configuration.
Although most programmable schedulers currently lack support for rotation
of queue priorities at line rate, we advocate for a competitive analysis
between the two schemes to study in depth their respective advantages.

6.1.3 Automating window-size configuration

Similar to other networking algorithms, PACKS relies on a window-based
approach and therefore requires two configuration parameters: the bursti-
ness allowance and, most importantly, the window size. In our evaluation,
we have explored the performance impact of configuring both large and
small window sizes (see Fig. 3.19) and have observed that longer windows
outperform under stationary distributions, while shorter ones work better
for less stable scenarios. Consequently, we see opportunities for research in
designing techniques to automatically adjust window size configurations
based on the monitored traffic conditions. Such an approach would enhance
PACKS’s adaptability and eliminate its need for manual configuration.

138 conclusion and outlook

6.1.4 Designing new abstractions for in-network congestion management

In this thesis, we have relied on the PIFO abstraction as the primary driver
of in-network congestion management. While PIFO queues can express a
wide range of policies, they do come with limitations. For instance, ranking
algorithms only allow operators to determine the importance of each packet,
and not whether it is preferable to drop or reorder it. Moreover, these
algorithms cannot express packet ranks as a function of the delivery or non-
delivery of other packets. Although recent works have already proposed
new abstractions to address some of PIFO’s limitations (e.g. its inability to
represent non-work-conserving schedulers), we expect future research to
introduce new abstractions for in-network congestion management.

6.1.5 Enabling multi-tenant scheduling on existing devices

In Chapter 4, we introduced the vision for QVISOR but did not present a
complete design or implementation. We expect follow-up work in this area
to address several key questions, such as how to best manage the interaction
between tenants, how to normalize different rank policies at scale and at
runtime, what is the right definition of isolation in this context, and what
is the appropriate granularity for ensuring fairness between tenants. We
believe that hierarchical PIFO trees [20] offer the right abstraction to express
the requirements of multiple tenants. However, realizing them at line rate
on existing programmable data planes remains an open challenge.

6.1.6 Improving the performance of ACC-Turbo

In Chapter 5, we introduced ACC-Turbo, a dedicated in-network congestion
management technique tailored to mitigating denial-of-service attacks. We
see research opportunities in improving the performance of the proposed
design across two dimensions. First, by leveraging smarter data structures
that can better discern attack traffic from benign traffic (e.g., using sketches
or probabilistic data structures). Second, by integrating data from other
sources to the ranking function beyond observed traffic (e.g., whitelists,
blacklists, or IP spoofing reports based on BGP routing information). In
this direction, we also expect future research to explore the combination of
unsupervised techniques, like ACC-Turbo, with supervised methods.

6.1 future work 139

6.1.7 Extending in-network congestion-management to other domains

We believe that several other applications, which are sensitive to network
congestion, could greatly benefit from in-network congestion management.
For instance, we see research opportunities in designing congestion man-
agement techniques for video delivery over content delivery networks or
distributed training within machine learning clusters. Likewise, we also see
potential in applying in-network congestion management to other network
domains with constrained bandwidth resources, such as cellular networks.

6.1.8 Synthesizing congestion management policies from high-level intents

So far, we assumed that operators are in charge of manually programming
their in-network congestion management techniques based on their goals.
As we continue to design novel policies and gain a better understanding
of their intricacies, we anticipate the emergence of mechanisms that can
automatically generalize this knowledge and create new algorithms tailored
to arbitrary performance objectives. These mechanisms could synthesize the
optimal policy for a given workload and performance goal, simplifying the
task for operators, who would only need to provide a high-level description
of their performance intent instead of a low-level ranking function.

6.1.9 Combining in-network congestion management with end-to-end approaches

In-network congestion management is just one piece of the puzzle when
it comes to managing congestion on the Internet. We see research op-
portunities in co-designing in-network techniques with end-host control
mechanisms, especially beneficial in private networks like data centers
where both end hosts and network devices are controlled by the same
operator. We envision “rank-aware congestion control” schemes, where
in-network abstractions (e.g., PIFO, PACKS, or SP-PIFO) provide feedback
to end hosts (such as the rank distribution of dropped packets), enabling
them to adjust transmissions for improved performance. Works like pFab-
ric [31] and Homa [133] have demonstrated the benefits of combining these
techniques for minimizing flow completion times. This design space offers
opportunities across all levels: from dedicated solutions to optimize specific
performance goals to higher-level abstractions to facilitate such co-designs.

O W N P U B L I C AT I O N S

[1] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever.
“SP-PIFO: Approximating Push-In First-Out Behaviors using Strict-
Priority Queues”. In: USENIX NSDI. 2023.

[2] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. “Aggregate-Based Congestion Control for Pulse-Wave
DDoS Defense”. In: ACM SIGCOMM. 2022.

[3] Albert Gran Alcoz and Laurent Vanbever. “QVISOR: Virtualizing
Packet Scheduling Policies”. In: ACM HotNets. 2023.

[4] Albert Gran Alcoz, Balázs Vass, Pooria Namyar, Behnaz Arzani,
Gábor Rétvári, and Laurent Vanbever. “Everything Matters in Pro-
grammable Packet Scheduling”. In: USENIX NSDI. 2025.

[5] Lloyd Brown, Albert Gran Alcoz, Akshay Narayan, Mohammad Al-
izadeh, Hari Balakrishnan, Eric Friedman, Ethan K.-Bassett, Arvind
Krishnamurthy, Michael Schapira, and Scott Shenker. “Principles
for Internet Congestion Management”. In: ACM SIGCOMM. 2024.

[6] Albert Gran Alcoz, Coralie Busse-Grawitz, Eric Marty, and Laurent
Vanbever. “Reducing P4 Language’s Voluminosity using Higher-
Level Constructs”. In: ACM EuroP4. 2022.

[7] Alexander Dietmüller, Albert Gran Alcoz, and Laurent Vanbever.
“FitNets: An Adaptive Framework to Learn Accurate Traffic Distri-
butions”. In: arXiv preprint, arXiv:2405.10931. 2024.

[8] Sarah McClure, Albert Gran Alcoz, Laurent Vanbever, Sylvia Rat-
nasamy, and Scott Shenker. “Inter-Cloud QoS with FlexEgress”. In:
Under submission. 2024.

[9] Vasileios Giotsas, Albert Gran Alcoz, Lucas Castanheira, Theophilus
Benson, Georgios Smaragdakis, and Marwan Fayed. “Spoof-Shield:
Mitigating IP Spoofing Attacks at the Internet’s Edge”. In: Under
submission. 2024.

141

R E F E R E N C E S

[10] J. Noel Chiappa. ARPANET Technical Information: Geographic Maps.
2012.

[11] Vinton G. Cerf and Robert E. Kahn. “A Protocol for Packet Network
Intercommunication”. In: IEEE ToC. 1974.

[12] John Nagle. “Congestion Control in IP/TCP Internetworks”. In:
Request For Comments: 896. 1984.

[13] V. Jacobson. “Congestion Avoidance and Control”. In: ACM SIG-
COMM. Stanford, California, USA, 1988.

[14] James Manyika and Charles Roxburgh. “The Great Transformer: The
Impact of the Internet on Economic Growth and Prosperity”. In:
McKinsey Global Institute. 2011.

[15] Danny Palmer. This Massive DDoS Attack Took Large Sections of a
Country’s Internet Offline. 2021.

[16] Network Programmability: The Road Ahead. 2023.

[17] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott
Shenker. “Universal Packet Scheduling”. In: USENIX NSDI. Santa
Clara, CA, USA, 2016.

[18] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and
Hari Balakrishnan. “No Silver Bullet: Extending SDN to the Data
Plane”. In: ACM HotNets. College Park, MD, USA, 2013.

[19] Anirudh Sivaraman, Suvinay Subramanian, Anurag Agrawal,
Sharad Chole, Shang-Tse Chuang, Tom Edsall, Mohammad Alizadeh,
Sachin Katti, Nick McKeown, and Hari Balakrishnan. “Towards
Programmable Packet Scheduling”. In: ACM HotNets. Philadelphia,
PA, USA, 2015.

[20] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, S.T. Chuang, Anurag Agrawal, Hari Balakrishnan,
Tom Edsall, Sachin Katti, and Nick McKeown. “Programmable
Packet Scheduling at Line Rate”. In: ACM SIGCOMM. Florianópolis,
Brazil, 2016.

[21] Intel. Intel Tofino Programmable Chipset Series. 2021.

143

144 bibliography

[22] Broadcom Trident II. 2016.

[23] Alexander Barkalov, Larysa Titarenko, and Malgorzata Mazurkiewicz.
Foundations of Embedded Systems. Springer International, 2019.

[24] Chuck Semeria. “Supporting Differentiated Service Classes: Queue
Scheduling Disciplines”. In: Juniper Networks White Paper. Sunnyvale,
CA, USA, 2001.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. “NetCache: Balancing
Key-Value Stores with Fast In-Network Caching”. In: ACM SOSP.
Shanghai, China, 2017.

[26] Netbench. 2018.

[27] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and
Ankit Singla. “Beyond Fat-trees Without Antennae, Mirrors, and
Disco-balls”. In: ACM SIGCOMM. Los Angeles, CA, USA, 2017.

[28] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, et
al. “P4: Programming Protocol-Independent Packet Processors”. In:
ACM SIGCOMM CCR. 2014.

[29] David D. Clark, Scott Shenker, and Lixia Zhang. “Supporting Real-
time Applications in an Integrated Services Packet Network: Archi-
tecture and Mechanism”. In: ACM SIGCOMM. Baltimore, MD, USA,
1992.

[30] The P4 Language Consortium. P4-16 Language Specification, Version
1.1.0-rc. 2018.

[31] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. “pFabric: Minimal
Near-optimal Datacenter Transport”. In: ACM SIGCOMM. Hong
Kong, China, 2013.

[32] Pawan Goyal, Harrick M. Vin, and Haichen Chen. “Start-time Fair
Queueing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks”. In: ACM SIGCOMM. Palo Alto, CA, USA,
1996.

[33] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Kr-
ishnamurthy. “Approximating Fair Queueing on Reconfigurable
Switches”. In: USENIX NSDI. Renton, WA, USA, 2018.

bibliography 145

[34] Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer, and Georg
Carle. “MoonGen: Software Packet Generation for 10 Gbit and Be-
yond”. In: USENIX NSDI. Oakland, CA, USA, 2015.

[35] Juniper Networks. Class of Service Feature Guide for Security Devices.
2018.

[36] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura,
Mostafa Ammar, Khaled Harras, and Amin Vahdat. “Eiffel: Efficient
and Flexible Software Packet Scheduling”. In: USENIX NSDI. Boston,
MA, USA, 2019.

[37] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott
Shenker. “Thoughts on Load Distribution and the Role of Program-
mable Switches”. In: ACM SIGCOMM. New York, NY, USA, 2019.

[38] Carmelo Cascone, Nicola Bonelli, Luca Bianchi, Antonio Capone,
and Brunilde Sansò. “Towards Approximate Fair Bandwidth Sharing
via Dynamic Priority Queuing”. In: IEEE LANMAN. Osaka, Japan,
2017.

[39] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao
Wang. “Information-Agnostic Flow Scheduling for Commodity Data
Centers”. In: USENIX NSDI. Oakland, CA, USA, 2015.

[40] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley.
“An Experimental Time-sharing System”. In: ACM AIEE-IRE. New
York, NY, USA, 1962.

[41] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braver-
man, Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. “Program-
mable Packet Scheduling with a Single Queue”. In: ACM SIGCOMM.
Virtual Event, USA, 2021.

[42] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G. Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
“Programmable Calendar Queues for High-speed Packet Schedul-
ing”. In: USENIX NSDI. Santa Clara, CA, USA, 2020.

[43] Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao Wang, Jie
Jiang, Yinda Zhang, and Nicholas Zhang. “QCluster: Clustering
Packets for Flow Scheduling”. In: ACM WWW. Virtual, 2022.

[44] Peixuan Gao, Anthony Dalleggio, Yang Xu, and H. Jonathan
Chao. “Gearbox: A Hierarchical Packet Scheduler for Approxi-
mate Weighted Fair Queuing”. In: USENIX NSDI. Renton, WA, USA,
2022.

146 bibliography

[45] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Hi-
manshu Raj, Umesh Krishnaswamy, Ramesh Govindan, and Srikanth
Kandula. “Finding Adversarial Inputs for Heuristics using Multi-
level Optimization”. In: USENIX NSDI. Santa Clara, CA, USA, 2024.

[46] Broadcom StrataXGS Switch Solutions. 2023.

[47] Balázs Vass, Csaba Sarkadi, and Gábor Rétvári. “Programmable
Packet Scheduling With SP-PIFO: Theory, Algorithms and Evalua-
tion”. In: IEEE INFOCOM Workshops. 2022.

[48] Nichols, Kathleen and Jacobson, Van. “Controlling Queue Delay”.
In: Communications of the ACM. 2012.

[49] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vah-
dat. “Swift: Delay is Simple and Effective for Congestion Control in
the Datacenter”. In: ACM SIGCOMM. Virtual Event, USA, 2020.

[50] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and
Murari Sridharan. “Data Center TCP (DCTCP)”. In: ACM SIGCOMM.
New Delhi, India, 2010.

[51] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra,
Himanshu Raj, and Srikanth Kandula. “Minding The Gap Between
Fast Heuristics and Their Optimal Counterparts”. In: ACM HotNets.
2022.

[52] Anurag Agrawal and Changhoon Kim. “Intel Tofino2: A 12.9 Tbps
P4-Programmable Ethernet Switch”. In: IEEE HotChips. 2020.

[53] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion Stoica, and Xin
Jin. “Twenty Years After: Hierarchical Core-Stateless Fair Queueing”.
In: USENIX NSDI. 2021.

[54] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian
Wohlfart, and Georg Carle. “Moongen: A Scriptable High-Speed
Packet Generator”. In: ACM IMC. Tokyo, Japan, 2015.

[55] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and
Simulation of a Fair Queuing Algorithm”. In: ACM SIGCOMM. New
York, NY, USA, 1989.

[56] Paul E McKenney. “Stochastic Fairness Queueing”. In: IEEE INFO-
COM. 1990.

bibliography 147

[57] M. Shreedhar and George Varghese. “Efficient Fair Queueing Us-
ing Deficit Round Robin”. In: ACM SIGCOMM. Cambridge, Mas-
sachusetts, USA, 1995.

[58] Linus E Schrage and Louis W Miller. “The Queue M/G/1 with
the Shortest Remaining Processing Time Discipline”. In: INFORMS
Operations Research. 1966.

[59] Vishal Shrivastav. “Fast, Scalable, and Programmable Packet Sched-
uler in Hardware”. In: ACM SIGCOMM. Beijing, China, 2019.

[60] Ruyi Yao, Zhiyu Zhang, Gaojian Fang, Peixuan Gao, Sen Liu, Yibo
Fan, Yang Xu, and H. Jonathan Chao. “BMW Tree: Large-scale, High-
throughput and Modular PIFO Implementation using Balanced
Multi-Way Sorting Tree”. In: ACM SIGCOMM. New York, NY, USA,
2023.

[61] Nirav Atre, Hugo Sadok, and Justine Sherry. “BBQ: A Fast and
Scalable Integer Priority Queue for Hardware Packet Scheduling”.
In: USENIX NSDI. Santa Clara, CA, USA, 2024.

[62] Peixuan Gao, Anthony Dalleggio, Jiajin Liu, Chen Peng, Yang Xu,
and H. Jonathan Chao. “Sifter: An Inversion-Free and Large-Capacity
Programmable Packet Scheduler”. In: USENIX NSDI. Santa Clara,
CA, USA, 2024.

[63] Sarah McClure, Zeke Medley, Deepak Bansal, Karthick Jayaraman,
Ashok Narayanan, Jitendra Padhye, Sylvia Ratnasamy, Anees Shaikh,
and Rishabh Tewari. “Invisinets: Removing Networking from Cloud
Networks”. In: USENIX NSDI. Boston, MA, 2023.

[64] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Pi-
asetzky, Arvind Krishnamurthy, and Ang Chen. “Runtime Program-
mable Switches”. In: USENIX NSDI. Renton, WA, USA, 2022.

[65] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan,
Aatish Kishan Varma, and Pravein et al. Kannan. “Switch Code
Generation Using Program Synthesis”. In: ACM SIGCOMM. Virtual,
2020.

[66] Brent Stephens, Aditya Akella, and Michael Swift. “Loom: Flexible
and Efficient NIC Packet Scheduling”. In: USENIX NSDI. Boston,
USA, 2019.

[67] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and
Dexter Kozen. “Formal Abstractions for Packet Scheduling”. In:
OOPSLA. Cascais, Portugal, 2023.

148 bibliography

[68] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu.
“Lyra: A Cross-Platform Language and Compiler for Data Plane Pro-
gramming on Heterogeneous ASICs”. In: ACM SIGCOMM. Virtual,
2020.

[69] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. “Flightplan: Dataplane Disaggregation and Place-
ment for P4 Programs”. In: USENIX NSDI. 2021.

[70] Sol Han and Seokwon Jang et al. “Virtualization in Programmable
Data Plane: A Survey and Open Challenges”. In: IEEE OJ-COMS.
2020.

[71] Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang
Kellerer. “Survey on Network Virtualization Hypervisors for Soft-
ware Defined Networking”. In: IEEE Communications Surveys and
Tutorials. 2016.

[72] Hang Zhu, Tao Wang, Yi Hong, Dan RK Ports, Anirudh Sivaraman,
and Xin Jin. “NetVRM: Virtual Register Memory for Programmable
Networks”. In: USENIX NSDI. Renton, WA, USA, 2022.

[73] Peng Zheng, Theophilus Benson, and Chengchen Hu. “P4visor:
Lightweight Virtualization and Composition Primitives for Build-
ing and Testing Modular Programs”. In: ACM CoNEXT. Heraklion,
Greece, 2018.

[74] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu.
“HyperV: A High Performance Hypervisor for Virtualization of the
Programmable Data Plane”. In: IEEE ICCCN. Vancouver, Canada,
2017.

[75] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman,
and Aurojit Panda. “Isolation Mechanisms for High-Speed Packet-
Processing Pipelines”. In: USENIX NSDI. Renton, WA, USA, 2022.

[76] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman,
Dan R. K. Ports, and Aurojit Panda. “Multitenancy for Fast and Pro-
grammable Networks in the Cloud”. In: USENIX HotCloud. Virtual,
2020.

[77] Mateus Saquetti, Guilherme Bueno, Weverton Cordeiro, and Jose
Azambuja. “P4VBox: Enabling P4-Based Switch Virtualization”. In:
IEEE Communications Letters. 2020.

bibliography 149

[78] Xin Jin, Jennifer Gossels, Jen Rexford, and David Walker. “CoVisor:
A Compositional Hypervisor for SDN”. In: USENIX NSDI. Oakland,
CA, 2015.

[79] Radostin Stoyanov and Noa Zilberman. “MTPSA: Multi-Tenant Pro-
grammable Switches”. In: EuroP4. Barcelona, Spain, 2020.

[80] Hasanin Harkous, Chrysa Papagianni, Koen De Schepper, Michael
Jarschel, Marinos Dimolianis, and Rastin Pries. “Virtual Queues for
P4: A Poor Man’s Programmable Traffic Manager”. In: IEEE TNSM.
2021.

[81] Yan-Wei Chen, Chi-Yu Li, Chien-Chao Tseng, and Min-Zhi Hu. “P4-
TINS: P4-Driven Traffic Isolation for Network Slicing With Band-
width Guarantee and Management”. In: IEEE TNSM. 2022.

[82] David Hancock and Jacobus Merwe. “HyPer4: Using P4 to Virtualize
the Programmable Data Plane”. In: ACM CoNEXT. Irvine, CA, 2016.

[83] Proton Team. Message Regarding the ProtonMail DDoS Attacks. 2015.

[84] Hidden Threat of Pulse Wave DDoS attacks. Publication Title: DDoS-
Guard Blog. 2019.

[85] Igal Zeifman. Attackers Use DDoS Pulses to Pin Down Multiple Targets.
Publication Title: Imperva Blog. 2017.

[86] Pulse-Wave DDoS Attacks Mark a New Tactic in Q2. Publication Title:
InfoSecurity Magazine. 2017.

[87] Alethea Toh. Azure DDoS Protection—2021 Q3 and Q4 DDoS attack
trends. Publication Title: Microsoft Azure Blog. 2022.

[88] Jai Vijayan. ’Pulse Wave’ DDoS Attacks Emerge As New Threat. Publica-
tion Title: Dark Reading News. 2017.

[89] Damian Menscher. Practical Solutions for Amplification Attacks. 2019.

[90] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey.
“Bohatei: Flexible and Elastic DDoS Defense”. In: USENIX Security.
Washington, DC, USA, 2015.

[91] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen,
Hongxin Hu, Guofei Gu, Qi Li, Mingwei Xu, and Jianping Wu.
“Poseidon: Mitigating Volumetric DDoS Attacks with Programmable
Switches”. In: NDSS Symposium. San Diego, CA, USA, 2020.

[92] Thomas Lintemuth, Patrick Hevesi, and Sushil Aryal. “Solution
Comparison for DDoS Cloud Scrubbing Centers”. In: Gartner. 2020.

150 bibliography

[93] Akamai. Prolexic Routed: Protect Your Entire Application Infrastructure
Against Large, Complex DDoS Attacks. 2020.

[94] Cloudflare. Cloudflare Advanced DDoS Protection. 2017.

[95] Radware. DefensePro: Advanced DDoS Defense and Attack Mitigation.
2021.

[96] Jared M. Smith and Max Schuchard. “Routing Around Congestion:
Defeating DDoS Attacks and Adverse Network Conditions via Reac-
tive BGP Routing”. In: IEEE S&P. San Francisco, CA, USA, 2018.

[97] Muoi Tran, Min Suk Kang, Hsu-Chun Hsiao, Wei-Hsuan Chiang,
Shu-Po Tung, and Yu-Su Wang. “On the Feasibility of Rerouting-
Based DDoS Defenses”. In: IEEE S&P. San Diego, CA, USA, 2019.

[98] Zaoxing Liu, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim,
Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. “Jaqen:
A High-Performance Switch-Native Approach for Detecting and
Mitigating Volumetric DDoS Attacks with Programmable Switches”.
In: USENIX Security. Virtual, 2021.

[99] Jiarong Xing, Wenqing Wu, and Ang Chen. “Ripple: A Program-
mable, Decentralized Link-Flooding Defense Against Adaptive Ad-
versaries”. In: USENIX Security. 2021.

[100] Yuhei Hayashi, Chen Meiling, and Li Su. Use Cases for DDoS Open
Threat Signaling (DOTS) Telemetry. Internet-Draft.

[101] Link 11. The Evolution of DDoS Reflection Amplification Vectors: a
Chronology. 2020.

[102] Catalin Cimpanu. FBI Warns of New DDoS Attack Vectors: CoAP,
WS-DD, ARMS, and Jenkins. 2020.

[103] Robin Sommer and Vern Paxson. “Outside the Closed World: On
Using Machine Learning for Network Intrusion Detection”. In: IEEE
S&P. Oakland, CA, 2010.

[104] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shab-
tai. “Kitsune: An Ensemble of Autoencoders for Online Network
Intrusion Detection”. In: NDSS Symposium. San Diego, CA, USA,
2018.

[105] Alexandre da Silveira Ilha, Ângelo Cardoso Lapolli, Jonatas Adil-
son Marques, and Luciano Paschoal Gaspary. “Euclid: A Fully In-
Network, P4-based Approach for Real-Time DDoS Attack Detection
and Mitigation”. In: IEEE TNSM. 2020.

bibliography 151

[106] Mahajan, Ratul and Bellovin, Steven M. and Floyd, Sally and Ioanni-
dis, John and Paxson, Vern and Shenker, Scott. “Controlling High
Bandwidth Aggregates in the Network”. In: ACM SIGCOMM CCR.
New York, NY, USA, 2002.

[107] Min Suk Kang, Virgil D Gligor, Vyas Sekar, et al. “SPIFFY: Inducing
Cost-Detectability Tradeoffs for Persistent Link-Flooding Attacks”.
In: NDSS Symposium. San Diego, CA, USA, 2016.

[108] Ali Kheradmand. “Automatic Inference of High-Level Network In-
tents by Mining Forwarding Patterns”. In: ACM SOSR. San Jose, CA,
USA, 2020.

[109] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Mot-
wani. “Incremental Clustering and Dynamic Information Retrieval”.
In: SIAM JoC. 2004.

[110] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani,
and Liadan O’Callaghan. “Clustering Data Streams: Theory and
Practice”. In: IEEE TKDE. 2003.

[111] Sanjoy Dasgupta. Notes for CSE 291: Topics in Unsupervised Learning,
Lecture 6: Online and Streaming Algorithms for Clustering. 2008.

[112] Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer.
“Machine Learning for Data Streams with Practical Examples in
MOA”. In: MIT Press. 2018.

[113] Rui Xu and Don Wunsch. “Clustering (Chapter 5.2.1)”. In: John Wiley
& Sons. 2008.

[114] Edgecore Networks. The Edgecore Networks DCS810 Switch with
Tofino2. 2017.

[115] Intel. Tofino 3 Intelligent Fabric Processor.

[116] CAIDA. Anonymized Traces from CAIDA Equinix NYC Internet Data
Collection Monitor-B, 2018. 2018.

[117] Catalin Cimpanu. ’Carpet-bombing’ DDoS Attack Takes Down South
African ISP for an Entire Day. 2019.

[118] Steinthor Bjarnason. DDoS Defences in the Terabit Era: Attack Trends,
Carpet Bombing. 2018.

[119] Tiago Heinrich, Rafael R Obelheiro, and C. Alberto Maziero. “New
Kids on the DRDoS Block: Characterizing Multiprotocol and Carpet
Bombing Attacks”. In: ACM PAM. 2021.

bibliography

[120] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali
A Ghorbani. “Developing Realistic Distributed Denial of Service
(DDoS) Attack Dataset and Taxonomy”. In: ICCST. 2019.

[121] Christopher D. Manning, Hinrich Schütze, and Prabhakar Raghavan.
“Introduction to Information Retrieval (Chapter 16.3)”. In: Cambridge
University Press. 2008.

[122] Oleg Kupreev, Ekaterina Badovskaya, and Alexander Gutnikov.
Kaspersky DDoS Reports. DDoS attacks in Q1 2020. 2020.

[123] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard,
Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman,
Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane
Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. “Understanding the Mirai Botnet”. In:
USENIX Security. Vancouver, Canada, 2017.

[124] Ron Winward. Mirai Inside of an IoT Botnet. 2017.

[125] Cloudflare. Technical Details Behind a 400Gbps NTP Amplification DDoS
Attack. 2014.

[126] Akamai. Memcached-fueled 1.3 Tbps Attacks. 2018.

[127] Matthew Prince. The DDoS That Almost Broke the Internet. 2013.

[128] Proton Team. Guide to DDoS Protection. 2015.

[129] Ilya V. Chugunkov, Leonid O. Fedorov, Bela Sh. Achmiz, and Zarina
R. Sayfullina. “Development of the Algorithm for Protection Against
DDoS-attacks of Type Pulse Wave”. In: IEEE EIConRus. 2018.

[130] Chen, Yu and Hwang, Kai and Kwok, Yu-Kwong. “Collaborative De-
fense Against Periodic Shrew DDoS Attacks in Frequency Domain”.
In: ACM TISSEC. 2005.

[131] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, and Ed-
ward W. Knightly. “DDoS-Resilient Scheduling to Counter Applica-
tion Layer Attacks Under Imperfect Detection”. In: IEEE INFOCOM.
Barcelona, Spain, 2006.

[132] Chu-Hsing Lin, Jung-Chun Liu, Hsun-Chi Huang, and Tsung-Che
Yang. “Using Adaptive Bandwidth Allocation Approach to Defend
DDoS Attacks”. In: IEEE MUE. Busan, Korea, 2008.

[133] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John
Ousterhout. “Homa: A Receiver-Driven Low-Latency Transport Pro-
tocol Using Network Priorities”. In: ACM SIGCOMM. 2018, 221.

In-Network Congestion Management
for Security and Performance
PhD Thesis by Albert Gran Alcoz

Diss. ETH No. 30290

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 []Introduction
	2 []SP-PIFO: Programmable Scheduling on Existing Devices
	2.1 Introduction
	2.2 Overview
	2.3 SP-PIFO design
	2.4 Gradient-based algorithm
	2.5 Our approach: SP-PIFO
	2.6 Implementation
	2.7 Evaluation
	2.8 Discussion
	2.9 Related work
	2.10 Conclusions

	3 []PACKS: Admission-Aware Programmable Scheduling
	3.1 Introduction
	3.2 Background
	3.3 Overview
	3.4 PACKS design
	3.5 Theoretical analysis of PACKS
	3.6 Performance analysis using MetaOpt
	3.7 Implementation
	3.8 Evaluation
	3.9 Related work
	3.10 Conclusions

	4 []QVISOR: Multi-tenant programmable scheduling
	4.1 Introduction
	4.2 Motivation
	4.3 QVISOR overview
	4.4 Preliminary evaluation
	4.5 Looking forward
	4.6 Related work
	4.7 Conclusion

	5 []ACC-Turbo: In-network denial-of-service defense
	5.1 Introduction
	5.2 Background
	5.3 Overview
	5.4 Traffic-aggregate inference
	5.5 Controlling aggregates
	5.6 Implementation
	5.7 Hardware-based evaluation
	5.8 Simulation-based evaluation
	5.9 Limitations
	5.10 Discussion
	5.11 Related work
	5.12 Conclusions

	6 []Conclusion and outlook
	6.1 Future work

	 []Bibliography
	 Own publications
	 References

